Skip to main content
Log in

Comparison of the characteristics of anammox granules of different sizes

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The physical properties and performance of anaerobic ammonium oxidation (anammox) granules of different sizes (0.5 ∼ 1.0 mm, 1.0 ∼ 1.5 mm, and above 1.5 mm) have been investigated. The values of the settling velocity increased with increasing size of the granules. There was no significant difference in metal contents among granules of different sizes, in which calcium, magnesium and iron were the predominant ions. Different start-up periods showed that larger granules were better able to resist adverse impacts and their activities could quickly be recovered. The specific activities of granules of different sizes were 0.55, 0.62, and 0.52 g N/ (g/VSS/day), respectively, which implied the activity of 1.0 ∼ 1.5 mm granules was the highest. Larger anammox granules were better able to resist temperature shock and nitrogenous shock loading. However, larger granules were also shown to contain bigger gas tunnels and interior hollows, which decrease the stability of anammox granules. With the comprehensive consideration of bacteria activity, granule stability and shock resistance capacity, the properties of granules within the size range of 1.0 ∼ 1.5 mm were found superior to others in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang, C. J., P. Zheng, C. H. Wang, Q. Mahmood, J. Q. Zhang, X. G. Chen, L. Zhang, and J. W. Chen (2011) Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Res. 45: 135–144.

    Article  CAS  Google Scholar 

  2. Tsushima, I., Y. Ogasawara, T. Kindaichi, H. Satoh, and S. Okabe (2007) Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res. 41: 1623–1634.

    Article  CAS  Google Scholar 

  3. Qiao, S., Y. Kawakubo, Y. J. Cheng, T. Nishiyama, T. Fujii, and K. Furukawa (2009) Identification of bacteria coexisting with anammox bacteria in an upflow column type reactor. Biodegradation 20: 117–124.

    Article  CAS  Google Scholar 

  4. Dapena-Mora, A., J. L. Campos, A. Mosquera-Corral, M. S. M. Jetten, and R. Mendez (2004) Stability of the ANAMMOX process in a gas-lift reactor and a SBR. J. Biotechnol. 110: 159–170.

    Article  CAS  Google Scholar 

  5. van der Star, W. R. L., W. R. Abma, D. Blommers, J. W. Mulder, T. Tokutomi, M. Strous, C. Picioreanu, and Van Loosdrecht (2007) Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 41: 4149–4163.

    Article  Google Scholar 

  6. Zhang, X., S. Liu, and X. Chen (2011) Effect of Shear Stress on Activated Sludge Granular in Sequencing Batch Reactor. Ener. Procedia. 11: 2121–2126.

    Article  CAS  Google Scholar 

  7. Tang, C. J., P. Zheng, and Q. Mahmood (2009) The shear force amendments on the slugging behavior of upflow Anammox granular sludge bed reactor. Sep. Purif. Technol. 69: 262–268.

    Article  CAS  Google Scholar 

  8. Li, X., Y. Xiao, D. Liao, W. Zheng, T. Yi, Q. Yang, and G. Zeng (2011) Granulation of simultaneous partial nitrification and anammox biomass in one single SBR system. Appl. Biochem. Biotech. 163: 1053–1065.

    Article  CAS  Google Scholar 

  9. Imajo, U., T. Tokutomi, and K. Furukawa (2004) Granulation of Anammox microorganisms in up-flow reactors. Water Sci. Technol. 49: 155–163.

    CAS  Google Scholar 

  10. Arrojo, B., A. Mosquera-Corral, J. L. Campos, and R. Mendez (2006) Effects of mechanical stress on Anammox granules in a sequencing batch reactor (SBR). J. Biotechnol. 123: 453–463.

    Article  CAS  Google Scholar 

  11. Strous, M., J. J. Heijnen, J. G. Kuenen, and M. S. M. Jetten (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biot. 50: 589–596.

    Article  CAS  Google Scholar 

  12. APHA (1998) Standard Methods for the Examination of Water and Wastewater. United Book Press Inc., Baltimore, Maryland, USA.

    Google Scholar 

  13. Su, K. Z. and H. Q. Yu (2005) Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environ. Sci. Technol. 39: 2818–2827.

    Article  CAS  Google Scholar 

  14. Wang, X. H., H. M. Zhang, F. L. Yang, L. P. Xia, and M. M. Gao (2007) Improved stability and performance of aerobic granules under stepwise increased selection pressure. Enz. Microb. Tech. 41: 205–211.

    Article  CAS  Google Scholar 

  15. Li, X. R., B. Du, H. X. Fu, R. F. Wang, J. H. Shi, Y. Wang, M. S. M. Jetten, and Z. X. Quan (2009) The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community. Syst. Appl. Microbiol. 32: 278–289.

    Article  CAS  Google Scholar 

  16. Saitou, N. and M. Nei (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  Google Scholar 

  17. Shi, X. Y., H. Q. Yu, Y. J. Sun, and X. Huang (2009) Characteristics of aerobic granules rich in autotrophic ammonium-oxidizing bacteria in a sequencing batch reactor. Chem. Eng. J. 147: 102–109.

    Article  CAS  Google Scholar 

  18. Zheng, Y. M., H. Q. Yu, and G. P. Sheng (2005) Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Proc. Biochem. 40: 645–650.

    Article  CAS  Google Scholar 

  19. Vázquez-Padín, J., I. Fernádez, M. Figueroa, A. Mosquera-Corral, J. L. Campos, and R. Méndez (2009) Applications of Anammox based processes to treat anaerobic digester supernatant at room temperature. Bioresour. Technol. 100: 2988–2994.

    Article  Google Scholar 

  20. Tang, C. J., P. Zheng, L. Zhang, J. W. Chen, Q. Mahmood, X. -G. Chen, B. L. Hu, C. H. Wang, and Y. Yu (2010) Enrichment features of anammox consortia from methanogenic granules loaded with high organic and methanol contents. Chemosph. 79: 613–619.

    Article  CAS  Google Scholar 

  21. Ji, G., F. Zhai, R. Wang, and J. Ni (2010) Sludge granulation and performance of a low superficial gas velocity sequencing batch reactor (SBR) in the treatment of prepared sanitary wastewater. Bioresour. Technol. 101: 9058–9064.

    Article  CAS  Google Scholar 

  22. Teil, M. J., M. Blanchard, and M. Chevreuil (2006) Atmospheric fate of phthalate esters in an urban area (Paris-France). Sci. Total Environ. 354: 212–223.

    Article  CAS  Google Scholar 

  23. Zandvoort, M. H., E. D. van Hullebusch, J. Gieteling, and P. N. L. Lens (2006) Granular sludge in full-scale anaerobic bioreactors: Trace element content and deficiencies. Enz. Microb. Tech. 39: 337–346.

    Article  CAS  Google Scholar 

  24. Pevere, A., G. Guibaud, E. Goin, E. van Hullebusch, and P. Lens (2009) Effects of physico-chemical factors on the viscosity evolution of anaerobic granular sludge. Biochem. Eng. J. 43: 231–238.

    Article  CAS  Google Scholar 

  25. Ghangrekar, M. M., S. R. Asolekar, and S. G. Joshi (2005) Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation. Water Res. 39: 1123–1133.

    Article  CAS  Google Scholar 

  26. Batstone, D. J. and J. Keller (2001) Variation of bulk properties of anaerobic granules with wastewater type. Water Res. 35: 1723–1729.

    Article  CAS  Google Scholar 

  27. Yang, J. C., L. Zhang, Y. Fukuzaki, D. Hira, and K. Furukawa (2010) High-rate nitrogen removal by the Anammox process with a sufficient inorganic carbon source. Bioresour. Technol. 101: 9471–9478.

    Article  CAS  Google Scholar 

  28. Bhunia, P. and M. M. Ghangrekar (2007) Required minimum granule size in UASB reactor and characteristics variation with size. Bioresour. Technol. 98: 994–999.

    Article  CAS  Google Scholar 

  29. Kindaichi, T., I. Tsushima, Y. Ogasawara, M. Shimokawa, N. Ozaki, H. Satoh, and S. Okabe (2007) In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms. Appl. Environ. Microb. 73: 4931–4939.

    Article  CAS  Google Scholar 

  30. Okabe, S., M. Oshiki, Y. Takahashi, and H. Satoh (2011) N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules. Water Res. 45: 6461–6470.

    Article  CAS  Google Scholar 

  31. Fux, C., M. Boehler, P. Huber, I. Brunner, and H. Siegrist (2002) Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. J. Biotechnol. 99: 295–306.

    Article  CAS  Google Scholar 

  32. Strous, M., E. Van Gerven, P. Zheng, J. G. Kuenen, and M. S. M. Jetten (1997) Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Res. 31: 1955–1962.

    Article  CAS  Google Scholar 

  33. Dosta, J., I. Fernández, J. R. Vázquez-Padín, A. Mosquera-Corral, J. L. Campos, J. Mata-Álvarez, and R. Méndez (2008) Shortand long-term effects of temperature on the Anammox process. J. Hazard. Mater. 154:688–693.

    Article  CAS  Google Scholar 

  34. Kimura, Y., K. Isaka, F. Kazama, and T. Sumino (2010) Effects of nitrite inhibition on anaerobic ammonium oxidation. Appl. Microbiol. Biot. 86: 359–365.

    Article  CAS  Google Scholar 

  35. Dapena-Mora, A., I. Fernandez, J. L. Campos, A. Mosquera-Corral, R. Mendez, and M. S. M. Jetten (2007) Evaluation of activity and inhibition effects on anammox process by batch tests based on the nitrogen gas production. Enz. Microb. Technol. 40: 859–865.

    Article  CAS  Google Scholar 

  36. Dolfing, J. (1985) Kinetics of methane formation by granular sludge at low substrate concentrations. Appl. Microbiol. Biot. 22: 77–81.

    Article  CAS  Google Scholar 

  37. Al-Muftah, A. E. and I. M. Abu-Reesh (2005) Effects of internal mass transfer and product inhibition on a simulated immobilized enzyme-catalyzed reactor for lactose hydrolysis. Biochem. Eng. J. 23: 139–153.

    Article  CAS  Google Scholar 

  38. Alphenaar, P. A., M. C. Pérez, and G. Lettinga (1993) The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules. Appl. Microbiol. Biot. 39: 276–280.

    Article  CAS  Google Scholar 

  39. Chen, J., Q. Ji, P. Zheng, T. Chen, C. Wang, and Q. Mahmood (2010) Floatation and control of granular sludge in a high-rate anammox reactor. Water Res. 44: 3321–3328.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglin Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, P., Xu, X., Yang, F. et al. Comparison of the characteristics of anammox granules of different sizes. Biotechnol Bioproc E 18, 446–454 (2013). https://doi.org/10.1007/s12257-012-0728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0728-4

Keywords

Navigation