Advertisement

Biotechnology and Bioprocess Engineering

, Volume 18, Issue 4, pp 686–696 | Cite as

Enhancement of phenolic compounds oxidation using laccase from Trametes versicolor in a microreactor

  • Ana Jurinjak Tušek
  • Marina Tišma
  • Valentina Bregović
  • Ana Ptičar
  • Želimir Kurtanjek
  • Bruno ZelićEmail author
Research Paper Process Biotechnology

Abstract

Laccases catalyse the oxidation of a wide range of substrates by a radical-catalyzed reaction mechanism, with a corresponding reduction of oxygen to water in a four-electron transfer process. Due to that, laccases are considered environmentally friendly enzymes, and lately there has been great interest in their use for the transformation and degradation of phenolic compounds. In this work, enzymatic oxidation of catechol and L-DOPA using commercial laccase from Trametes versicolor was performed, in continuously operated microreactors. The main focus of this investigation was to develop a new process for phenolic compounds oxidation, by application of microreactors. For a residence time of 72 s and an inlet oxygen concentration of 0.271 mmol/dm3, catechol conversion of 41.3% was achieved, while approximately the same conversion of L-DOPA (45.0%) was achieved for an inlet oxygen concentration of 0.544 mmol/dm3. The efficiency of microreactor usage for phenolic compounds oxidation was confirmed by calculating the oxidation rates; in the case of catechol oxidation, oxidation rates were in the range from 76.101 to 703.935 g/dm3/d (18–167 fold higher, compared to the case in a macroreactor). To better describe the proposed process, kinetic parameters of catechol oxidation were estimated, using data collected from experiments performed in a microreactor. The maximum reaction rate estimated in microreactor experiments was two times higher than one estimated using the initial reaction rate method from experiments performed in a cuvette. A mathematical model of the process was developed, and validated, using data from independent experiments.

Keywords

microreactor oxidation of phenolic compounds laccase kinetic measurements mathematical model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dwivedi, U. N., P. Singh, V. P. Pandey, and A. Kumar (2011) Structure-function relationship among bacterial, fungal and plant laccases. J. Mol. Catal. B-Enzym. 68: 117–128.CrossRefGoogle Scholar
  2. 2.
    Cañas, A. I. and S. Camarero (2010) Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnol. Adv. 28: 694–705.CrossRefGoogle Scholar
  3. 3.
    Patrick, F., G. Mtui, A. M. Mshandete, G. Johansson, and A. Kivaisi (2009) Purification and characterisation of a laccase from the basidiomycete Funalia trogii (Berk.) isolated in Tanzania. Afr. J. Biochem. Res. 3: 250–258.Google Scholar
  4. 4.
    Morozova, O. V., G. P. Shumakovich, S. V. Shleev, and Y. I. Yaropolov (2007) Laccase mediator systems and their applications: A review. Appl. Biochem. Micro. 43: 523–535.CrossRefGoogle Scholar
  5. 5.
    Riva, S. (2006) Laccases: Blue enzymes for green chemistry. Trends Biotechnol. 24: 220–226.CrossRefGoogle Scholar
  6. 6.
    Pilz, R., E. Hammer, F. Schauer, and U. Kragl (2003) Laccase catalysed synthesis of coupling products of phenolic substrates in different reactors. Appl. Microbiol. Biotechnol. 60: 708–712.Google Scholar
  7. 7.
    Portaccio, M., S. Di Martino, P. Maiuri, D. Durante, P. De Luca, M. Lepore, U. Bencivenga, S. Rossi, A. De Maio, and D. G. Mita (2006) Biosensors for phenolic compounds: The catechol as a substrate model. J. Mol. Catalysis B. 41: 97–102.CrossRefGoogle Scholar
  8. 8.
    Rodríguez Couto, S. and J. L. T. Herrera (2006) Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 24: 500–513.CrossRefGoogle Scholar
  9. 9.
    Kudanga, T., G. S. Nyanhongo, G. M. Guebitz, and S. Burton (2011) Potential applications of laccase-mediated coupling and grafting reactions: A review. Enz. Microb. Tech. 48: 195–208.CrossRefGoogle Scholar
  10. 10.
    Fernández-Fernández, M., M. Ángeles Sanromán, and D. Moldes (2012) Recent developments and applications of immobilized laccase. Biotechnol. Adv. In press., dx.doi.org/10.1016/j.biotechadv.2012.02.013.Google Scholar
  11. 11.
    Tišma, M., B. Zelić, Đ. Vasi-Rački, P. žnidaršić-Plazl, and I. Plazl (2009) Modelling of laccase-catalyzed L-DOPA oxidation in a microreactor. Chem. Eng. J. 149: 383–388.CrossRefGoogle Scholar
  12. 12.
    Jeon, J. -R., P. Baldrian, K. Murugesan, and Y. S. Chang (2012) Laccase-catalysed oxidation of naturally occurring phenols: From in vivo biosynthetic pathways to green synthetic applications. Microb. Biotech. 5: 318–332.CrossRefGoogle Scholar
  13. 13.
    Löwe, H., V. Hessel, and A. Mueller (2002) Microreactors. Prospects already achieved and possible misuse. Pure Appl. Chem. 74: 2271–2276.CrossRefGoogle Scholar
  14. 14.
    Löwe, H. and W. Ehrfeld (1999) State-of-the-art in microreaction technology: Concepts, manufacturing and applications. Electrochem. Acta 44: 3679–3689.CrossRefGoogle Scholar
  15. 15.
    Roberge, D. M., L. Ducry, N. Bieler, P. Cretton, and B. Zimmermann (2005) Microreactor technology: A revolution for the fine chemical and pharmaceutical industries? Chem. Eng. Technol. 28: 318–323.CrossRefGoogle Scholar
  16. 16.
    Asanomi, Y., H. Yamaguchi, M. Miyazaki, and H. Maeda (2011) Enzyme-immobilized microfluidic process reactors. Molecules 16: 6041–6059.CrossRefGoogle Scholar
  17. 17.
    Bolivar, J. M., J. Wiesbauer, and B. Nidetzky (2011) Biotransformations in microstructured reactors: More than flowing with the stream? Trends Biotechnol. 29: 333–342.CrossRefGoogle Scholar
  18. 18.
    Leksawasdi, N., Y. Y. S. Chow, M. Breuer, B. Hauer, B. Rosche, and P. L. Rogers (2004) Kinetic analysis and modelling of enzymatic (R)-phenylacetylcarbinol batch biotransformation process. J. Biotech. 111: 179–189.CrossRefGoogle Scholar
  19. 19.
    Tadepalli, S., D. Qian, and A. Lawal (2007) Comparison of performance of microreactor and semi-batch reactor for catalytic hydrogenation of o-nitroanisole. Catal. Today 125: 64–73.CrossRefGoogle Scholar
  20. 20.
    Rebrov, E. V., M. H. J. M. de Croon, and J. C. Schouten (2002) Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor. Chem. Eng. J. 90: 61–76.CrossRefGoogle Scholar
  21. 21.
    Tušek, A., A. Šalić, ž. Kurtanjek, and B. Zelić (2012) Modelling and kinetic parameter estimation of alcohol dehydrogenase catalyzed hexanol oxidation in a microreactor. Eng. Life Sci. 12: 49–56.CrossRefGoogle Scholar
  22. 22.
    Tišma, M. (2008) Laccase form Trametes versicolor catalyzed phenolic compound oxidations in different types of reactors. MS Thesis. University of Zagreb, Croatia.Google Scholar
  23. 23.
    Li, J. and P. W. Carr (1997) Accuracy of empirical correlations for estimating diffusion coefficients in aqueous organic mixtures. Anal. Chem. 69: 2530–2536.CrossRefGoogle Scholar
  24. 24.
    Plazl, I. and M. Lakner (2010) Modelling and finite difference numerical analysis of reaction-diffusion dynamics in a microreactor. Acta Chem. Slov. 57: 100–109.Google Scholar
  25. 25.
    van den Broek, S. A. M. W., R. Becker, K. Koch, and P. J. Nieuwland (2012) Microreactor technology: Real time flow measurements in organic synthesis. Micromachines 3: 244–254.CrossRefGoogle Scholar
  26. 26.
    Navarra, C., C. Goodwin, S. Burton, B. Danieli, and S. Riva (2010) Laccase-mediated oxidation of phenolic derivatives. J. Mol. Catal. B-Enzym. 65: 52–57.CrossRefGoogle Scholar
  27. 27.
    Gainfreda L., F. Sannino, M. A. Rao, and J. M. Bollaq (2003) Oxidative transformation of phenols in aqueous mixtures. Water Res. 37: 3205–3215.CrossRefGoogle Scholar
  28. 28.
    Ko, C. H. and S. S. Chen (2008) Enhanced removal of three phenols by laccase polymerisation with MF/UF membranes. Bioresour. Technol. 99: 2293–2298.CrossRefGoogle Scholar
  29. 29.
    Tišma, M., P. žnidaršić-Plazl, I. Plazl, B. Zelić, and Đ. Vasić-Rački (2008) Modelling of L-DOPA oxidation catalysed by laccase. Chem. Biochem. Eng. Q. 22: 307–313.Google Scholar
  30. 30.
    Kurniawati, S. and J. A. Nicell (2009) A comprehensive kinetic model of laccase-catalysed oxidation of aqueous phenols. Biotechnol. Prog. 25: 763–773.CrossRefGoogle Scholar
  31. 31.
    Lei, F. and S. B. Jørgensen (2001) Estimation of kinetic parameters in structured yeast model using regularisation. J. Biotechnol. 12: 223–237.CrossRefGoogle Scholar
  32. 32.
    Aktaş, N. and A. Tanyolaç (2003) Kinetics of laccase-catalysed oxidative polymerization of catechol. J. Mol. Catal. B-Enzym. 22: 61–69.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ana Jurinjak Tušek
    • 1
  • Marina Tišma
    • 2
  • Valentina Bregović
    • 1
  • Ana Ptičar
    • 1
  • Želimir Kurtanjek
    • 1
  • Bruno Zelić
    • 3
    Email author
  1. 1.Faculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
  2. 2.Faculty of Food Technology OsijekJosip Juraj Strossmayer University of OsijekOsijekCroatia
  3. 3.Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations