Skip to main content
Log in

Study of the permeability of tomato pericarp etched by low-energy ion beams based on α-particles Irradiation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Low-energy ion beam bio-technology has been applied in the biological field and has gained remarkable success in crop and microbe breeding. However, to understand how low-energy ion beams interact with biological materials remains a challenge for researchers who work for the development of ion-beam bio-technology. In this work, tomato pericarp was used as the target sample to study the effect of ion beams on the permeability of biological objects. A series of experiments were conducted via irradiating tomato pericarp samples with low-energy (10 keV ∼ 25 keV) ion beams followed by measuring the pericarp’s permeability using transmissive α particles. The transmissive spectra of α particles and the measurement of the tip number in CR39 gave a quantitative evaluation of the sputtering effect caused by low-energy ions. Meanwhile, natural red dye was used to examine the permeability of irradiated tomato pericarp samples. It was found that the sputtering effect is not only proportional to the ion energy and dose, but dependent on the ion type as well. The damage caused by Ar ions due to sputtering was much more severe than that caused by N ions sputtering with the same dose. Therefore, this study not only demonstrates the permeability difference of biological membranes before and after ion irradiation, but also provides the information on how to optimize the experimental conditions for application of the low-energy ion beam in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaporojtchenko, V., J. Zekonyte, J. Erichsen, and F. Faupel (2003) Etching rate and structural modification of polymer films during low energy ion irradiation. Nucl. Instr. Meth. B 208: 155–160.

    Article  CAS  Google Scholar 

  2. Yu, Z.L, J.J. He, J.G. Deng, X.D. Wang, Y.J. Wu, and G.F. Liu (1989) Preliminary studies on the mutaqenic mechanism of the ion implamtation rice. Anhui Agric. Sci. 1: 12–16.

    Google Scholar 

  3. Yu, Z.L., J.G. Deng, J.J. He, Y.P. Huo, Y.J. Wu, X.D. Wang, and G.F. Lui (1991) Mutation breeding by ion implantation. Nucl. Instr. Meth. B 59–60: 705–708.

    Article  Google Scholar 

  4. Wu, L.F. and Z.L. Yu (2001) Radiobiological effects of a lowenergy ion beam on wheat. Radiat. Environ. Biophys. 40: 53–57.

    Article  CAS  Google Scholar 

  5. Krasaechai, A., Y.D. Yu, T. Sirisawad, T. Phornsawatchai, W. Bundithya, U. Taya, S. Anuntalabhochai, and T. Vilaithong (2009) Low-energy ion beam modification of horticultural plants for induction of mutation. Surf. Coat. Technol. 203: 2525–2530.

    Article  CAS  Google Scholar 

  6. Mahadtanapuk, S., L.D. Yu, R. Cutler, T. Vilaithong, and S. Anuntalabhochai (2007) Mutation of Bacillus licheniformis using low-energy ion beam bombardment. Surf. Coat. Technol. 201: 8029–8033.

    Article  CAS  Google Scholar 

  7. Song, M., Y.J. Wu, Y. Zhang, B.M. Liu, J.Y. Jiang, X. Xu, and Z.L. Yu (2007) Mutation of rice (Oryza sativa L.) LOX-1/2 nearisogenic lines with ion beam implantation and study of their storability. Nucl. Instr. Meth. B 265: 495–500.

    Google Scholar 

  8. Liu, B.M., Y.J. Wu, X. Xu, M. Song, M. Zhao, and X.D. Fu (2008) Plant height revertants of Dominant Semidwarf mutant rice created by low-energy ion irradiation. Nucl. Instr. Meth. B 266: 1099–1104.

    Article  CAS  Google Scholar 

  9. Stevens, C.W., M. Zeng, and G.J. Cerniqlia (1996) Ionizing radiation greatly improves gene transfer efficiency in mammalian cells. Hum Gene Ther. 14: 1727–1734.

    Article  Google Scholar 

  10. Anuntalabhochai, S., R. Chandej, B. Phanchaisri, L.D. Yu, T. Vilaithong, and I.G. Brown (2001) Ion-beam-induced deoxyribose nucleic acid transfer Appl. Phys. Lett. 78: 2393–2395.

    CAS  Google Scholar 

  11. Anuntalabhochai, S., R. Chandej, M. Sanguansermsri, S. Lapala, R.W. Cutler, and T. Vilaithong (2009) Ion-beam-induced gene transfer in Saccharomyces cerevisiae. Surf. Coat. Technol. 203: 2521–2524.

    Article  CAS  Google Scholar 

  12. Brenot, J.C., H. Dunet, J.A. Fayeton, M. Barat, and M. Winter (1996) Analysis of collision induced dissociation of Na2 + molecular ions. Phys. Rev. Lett. 77: 1246–1249.

    Article  CAS  Google Scholar 

  13. Yu, Z.L. (2005) Introduction to Ion Beam Biotechnology. pp. 33–35. Springer-Verlag, New York, USA.

    Google Scholar 

  14. Vilaithong, T., L.D. Yu, C. Alisi, B. Phanchaisri, P. Apavatjrut, and S. Anuntalabhochai (2000) A study of low-energy ion beam effects on outer plant cell structure for exogenous macromolecule transferring. Surf. Coat. Technol. 128-129: 133–138.

    Article  CAS  Google Scholar 

  15. Yamamura, Y. and H. Tawara (1996) Energy dependence of ioninduced sputtering yields from monatomic solids at normal incidence. At. Data Nucl. Data Tables 62: 149–253.

    Article  CAS  Google Scholar 

  16. Weigand, A.J. and B.A. Banks (1977) Ion-beam-sputter modification of the surface morphology of biological implants. J. Vac. Sci.Technol. 14: 326–330.

    Article  CAS  Google Scholar 

  17. Wanichapichart, P. and L.D. Yu (2007) Chitosan membrane filtering characteristics modification by N-ion beams. Surf. Coat. Technol. 201: 8165–8169.

    Article  CAS  Google Scholar 

  18. Zekonyte, J., V. Zaporojtchenko, and F. Faupel (2005) Investigation of the drastic change in the sputter rate of polymers at low ion fluence. Nucl. Instr. Meth. B 236: 241–248.

    Article  CAS  Google Scholar 

  19. Zhang, L.Q., C.H. Zhang, J. Gou, L.H. Han, Y.T. Yang, Y.M. Sun, and Y.F. Jin (2011) PL and XPS study of radiation damage created by various slow highly charged heavy ion on GaN epitaxial layers. Nucl. Instr. Meth. B 269: 2835–2839.

    Article  CAS  Google Scholar 

  20. Kim, M.S., Y.J. Choi, and H.S. Park (2008) Analysis of chitosan irradiated with high-energy cyclotron ion beams. J. Phys. Chem. Solids 69: 1569–1572.

    Article  CAS  Google Scholar 

  21. Rudy, A.S. and V.I. Bachurin (2008) Spatially nonlocal model of surface erosion by ion bombardment. Bull. Russ. Acad. Sci.: Phys. 72: 586–591.

    Article  Google Scholar 

  22. Zhang, N., J.C. Jiang, X.Y. Li, and Y.J. Tong (2011) Effect of low energy ion beam implantation on the microstructure of cellulose. Radiat. Phys. Chem. 80: 990–993.

    Article  CAS  Google Scholar 

  23. Ichiki. K., S. Ninomiya, Y. Nakata, Y. Honda, T. Seki, T. Aoki, and J. Matsuo (2008) High sputtering yields of organic compounds by large gas cluster ions. Appl. Surf. Sci. 255: 1148–1150.

    Article  CAS  Google Scholar 

  24. Prakrajang, K., P. Wanichapichart, S. Anuntalabhochai, S. Pitakrattananukool, and L.D. Yu (2009) Ion beam modification of chitosan and cellulose membranes for simulation of ion bombardment of plant cell envelope. Nucl. Instr. Meth. B 267: 1645–1649.

    Article  CAS  Google Scholar 

  25. Yu, Z.L. (2007) Study on the interaction of low-energy ions with organisms. Surf. Coat. Technol. 201: 8006–8013.

    Article  CAS  Google Scholar 

  26. Xue, J.M., Y.G. Wang, F. Liu, S.X. Wang, S. Yan, and W.J. Zhao (2000) Study of the penetration behavior of energetic ions in botanic materials with transmission measurement. Surf. Coat. Technol. 128-129: 139–143.

    Article  CAS  Google Scholar 

  27. Shimada, K., T. Abe, T. Iimoto, and T. Kosako (2011) Sensitization of Solid Nuclear Track Detector in Carbon Dioxide for Improved fast neutron dosimeter. Jpn. J. Health Phys. 46: 163–167.

    CAS  Google Scholar 

  28. Stasio D.G., B.H. Frazer, M. Girasole, L.M. Wiese, E.K. Krasnowska, G. Greco, A. Serafino, and T. Parasassi (2004) Imaging the cell surface: Argon sputtering to expose inner cell structures. Microsc. Res. Techniq. 63: 115–121.

    Article  Google Scholar 

  29. Wada, M., S. Nishigaito, R. Flauta, and T. Kasuya (2003) Modification of bamboo surface by irradiation of ion beams. Nucl. Instr. Meth. B 206: 557–560.

    Article  CAS  Google Scholar 

  30. Bhattacharyya., S.R., D. Ghose, and D. Basu (1990) Mass and energy dependence of the sputtering yield of gallium arsenide. Nucl. Instr. Meth. B 47: 253–256.

    Article  Google Scholar 

  31. Ensinger, W., O. Lensch, F. Sittner, J. Knecht, K. Volz, T. Matsutani, and M. Kiuchi (2003) Argon versus nitrogen ion beam assisted deposition of amorphous carbon and carbon-nitrogen films on aluminum for protection against aqueous corrosion. Nucl. Instr. Meth. B 206: 334–338.

    Article  CAS  Google Scholar 

  32. Salvadori, M.C., F.S. Teixeira, and I.G. Brown (2006) On the origin of microcraters on the surface of ion beam bombarded plant cell walls. Nucl. Instr. Meth. B 243: 250–252.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Chen, L., Xu, X. et al. Study of the permeability of tomato pericarp etched by low-energy ion beams based on α-particles Irradiation. Biotechnol Bioproc E 18, 440–445 (2013). https://doi.org/10.1007/s12257-012-0584-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0584-2

Keywords

Navigation