Biotechnology and Bioprocess Engineering

, Volume 18, Issue 3, pp 538–545 | Cite as

Chymotrypsin — Eudragit® complex formation

  • Valeria Boeris
  • Laura Verónica Cappella
  • Gisele Peres
  • Inés Burgos
  • Nádya Pesce da Silveira
  • Gerardo Fidelio
  • Guillermo Picó
Research Paper


Eudragit® L100 (EuL) and Eudragit® S100 (EuS) are synthetic polyanions differing on their electric charge density. They interact with chymotrypsin (ChTRP), a basic protein forming soluble and non-soluble complexes. The complex formation was studied by dynamic light scattering, isothermal titration calorimetry, native fluorescence emission, circular dichroism and thermodynamical thermal stability of the enzyme. EuS was able to bind 33 ChTRP molecules while EuL, 60. The binding of ChTRP to both Eu was slightly endothermic and the entropic factor was responsible for the soluble complexes formation. The ChTRP-Eu size increases with pH and the binding of ChTRP to Eu modifies the Eu hydrodynamic radium. The interaction of ChTRP with Eu did not modify its secondary or tertiary structure. The thermal stability of ChTRP was increased when it interacted with both Eu.


eudragit chymotrypsin polyelectrolytes calorimetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, J., Z. He, and K. Hu (2000) Purification and characterization of β-mannanase from Bacillus licheniformis for industrial use. Biotechnol. Lett. 22: 1375–1378.CrossRefGoogle Scholar
  2. 2.
    Mazzaferro, L., J. D. Breccia, M. M. Andersson, B. Hitzmann, and R. Hatti-Kaul (2010) Polyethyleneimine-protein interactions and implications on protein stability. Int. J. Biol. Macromol. 47: 15–20.CrossRefGoogle Scholar
  3. 3.
    Tsuboi, A., T. Izumi, M. Hirata, J. Xia, P. L. Dubin, and E. Kokufuta (1996) Complexation of proteins with a strong polyanion in an aqueous salt-free system. Langmuir 12: 6295–6303.CrossRefGoogle Scholar
  4. 4.
    Cooper, C. L., P. L. Dubin, A. B. Kayitmazer, and S. Turksen (2005) Polyelectrolyte-protein complexes. Curr. Opin. Colloid Interface Sci. 10: 52–78.CrossRefGoogle Scholar
  5. 5.
    Gupta, M. N., D. Guoqiang, R. Kaul, and B. Mattiasson (1994) Purification of xylanase from Trichoderma viride by precipitation with an anionic polymer Eudragit S 100. Biotechnol. Tech. 8: 117–122.CrossRefGoogle Scholar
  6. 6.
    Cappella, L. V., V. Boeris, and G. Picó (2011) A simple method of chymotrypsin concentration and purification from pancreas homogenate using Eudragit® L100 and Eudragit® S100. J. Chromatogr. B. 879: 1003–1007.CrossRefGoogle Scholar
  7. 7.
    Harnsilawat, T., R. Pongsawatmanit, and D. J. McClements (2006) Characterization of β-lactoglobulin-sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids 20: 577–585.CrossRefGoogle Scholar
  8. 8.
    Boeris, V., D. Spelzini, J. Peleteiro Salgado, G. Picó, D. Romanini, and B. Farruggia (2008) Chymotrypsin-poly vinyl sulfonate interaction studied by dynamic light scattering and turbidimetric approaches. Biochim. Biophys. Acta Gen. Subj. 1780: 1032–1037.CrossRefGoogle Scholar
  9. 9.
    Pace, C. N. (1990) Measuring and increasing protein stability. Trends Biotechnol. 8: 93–98.CrossRefGoogle Scholar
  10. 10.
    Röhm GmbH & Co. KG Pharma Polymers.
  11. 11.
    De Gennes, P. G., P. Pincus, R. M. Velasco, and F. Brochard (1976) Remarks on polyelectrolyte conformation. J. Phys. France 37: 1461–1473.CrossRefGoogle Scholar
  12. 12.
    Khokhlov, A. R. (1980) On the collapse of weakly charged polyelectrolytes. J. Phys. A: Math. Gen. 13: 979–987.CrossRefGoogle Scholar
  13. 13.
    Van de Steeg, H. G. M., M. A. Cohen Stuart, A. De Keizer, and B. H. Bijsterbosch (1992) Polyelectrolyte adsorption: A subtle balance of forces. Langmuir 8: 2538–2546.CrossRefGoogle Scholar
  14. 14.
    Cousin, F., J. Gummel, D. Ung, and F. Boué (2005) Polyelectrolyteprotein complexes: Structure and conformation of each specie revealed by SANS. Langmuir 21: 9675–9688.CrossRefGoogle Scholar
  15. 15.
    Velázquez-Campoy, A., H. Ohtaka, A. Nezami, S. Muzammil, and E. Freire (2001) Isothermal Titration Calorimetry. In: Current Protocols in Cell Biology. John Wiley & Sons, Inc.Google Scholar
  16. 16.
    Romanini, D., M. Braia, R. G. Angarten, W. Loh, and G. Picó (2007) Interaction of lysozyme with negatively charged flexible chain polymers. J. Chromatogr. B 857: 25–31.CrossRefGoogle Scholar
  17. 17.
    Jones, O., E. A. Decker, and D. J. McClements (2010) Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocolloids 24: 239–248.CrossRefGoogle Scholar
  18. 18.
    Wang, Y., K. Kimura, Q. Huang, P. L. Dubin, and W. Jaeger (1999) Effects of Salt on PolyelectrolyteMicelle Coacervation. Macromol. 32: 7128–7134.CrossRefGoogle Scholar
  19. 19.
    Prabhu, V. M. (2005) Counterion structure and dynamics in polyelectrolyte solutions. Curr. Opin. Colloid Interface Sci. 10: 2–8.CrossRefGoogle Scholar
  20. 20.
    Lakowicz, J. R. (2006) Principles of fluorescence spectroscopy. Plenum Press, NY, USA.CrossRefGoogle Scholar
  21. 21.
    Driscoll, W. C. (1996) Robustness of the ANOVA and Tukey-Kramer statistical tests. Comput. Ind. Eng. 31: 265–268.CrossRefGoogle Scholar
  22. 22.
    Fuciños González, J. P., G. Bassani, B. Farruggia, G. A. Picó, L. Pastrana Castro, and M. L. Rua (2011) Conformational flexibility of lipase Lip1 from Candida Rugosa studied by electronic spectroscopies and thermodynamic approaches. Protein J. 30: 77–83.CrossRefGoogle Scholar
  23. 23.
    Bohidar, H. P. L. Dubin, P. R. Majhi, C. Tribet, and W. Jaeger (2005) Effects of Proteinpolyelectrolyte affinity and polyelectrolyte molecular weight on dynamic properties of bovine serum AlbuminPoly(diallyldimethylammonium chloride) Coacervates. Biomacromol. 6: 1573–1585.CrossRefGoogle Scholar
  24. 24.
    Gummel, J. F. Boué, B. Demé, and F. Cousin (2006) Charge stoichiometry inside polyelectrolyteprotein complexes: A direct SANS measurement for the PSSNalysozyme system. J. Phys. Chem. B 110: 24837–24846.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valeria Boeris
    • 1
  • Laura Verónica Cappella
    • 1
  • Gisele Peres
    • 2
  • Inés Burgos
    • 3
  • Nádya Pesce da Silveira
    • 2
  • Gerardo Fidelio
    • 3
  • Guillermo Picó
    • 1
  1. 1.Laboratorio de Fisicoquímica Aplicada a Bioseparación, Departamento de Química-Física, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
  2. 2.Instituto de QuímicaUniversidade Federal do Rio Grande do SulPorto Alegre, RSBrasil
  3. 3.Departamento de Química Biológica, Centro de Investigaciones en Química Biológica Facultad de Ciencias QuímicasUniversidad Nacional de CoìrdobaCórdobaArgentina

Personalised recommendations