Skip to main content

Advertisement

Log in

Recent development of highly sensitive protease assay methods: Signal amplification through enzyme cascades

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Proteases are involved in almost all biological processes, and therefore, aberrant activity of many of these enzymes is an important indicator of disease. Various methods have been developed to analyze protease activity, among which, protease assays based on resonance energy transfer are currently used most widely. However, quantitative methods with relatively higher sensitivity are needed, especially for disease diagnosis at early stages. One of the strategies to achieve higher sensitivity is to implement signal amplification of the protease activity. In this review, we briefly summarize the protease assay methods based on resonance energy transfer, and then elaborate the efforts to develop sensitive protease assays through signal amplification by using enzyme cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Doucet, A. and C. M. Overall (2008) Protease proteomics: Revealing protease in vivo functions using systems biology approaches. Mol. Aspects Med. 29: 339–358.

    Article  CAS  Google Scholar 

  2. Turk, B. (2006) Targeting proteases: Successes, failures and future prospects. Nature Rev. Drug Discovery 5: 785–799.

    Article  CAS  Google Scholar 

  3. Blum, G., S. R. Mullins, K. Keren, M. Fonovic, C. Jedeszko, M. J. Rice, B. F. Sloane, and M. Bogyo (2005) Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nature Chem. Biol. 1: 203–209.

    Article  CAS  Google Scholar 

  4. Edwards, D. R. and G. Murphy (1998) Cancer. Proteases—invasion and more. Nature 394: 527–528.

    Article  CAS  Google Scholar 

  5. Law, B., R. Weissleder, and C. H. Tung (2007) Protease-sensitive fluorescent nanofibers. Bioconjugate Chem. 18: 1701–1704.

    Article  CAS  Google Scholar 

  6. Southan, C. (2001) A genomic perspective on human proteases as drug targets. Drug Discovery Today 6: 681–688.

    Article  CAS  Google Scholar 

  7. Spaltenstein, A., W. M. Kazmierski, J. F. Miller, and V. Samano (2005) Discovery of next generation inhibitors of HIV protease. Curr. Topics Med. Chem. 5: 1589–1607.

    Article  CAS  Google Scholar 

  8. McCawley, L. J. and L. M. Matrisian (2000) Matrix metalloproteinases: Multifunctional contributors to tumor progression. Mol. Med. Today 6: 149–156.

    Article  CAS  Google Scholar 

  9. Paulick, M. G. and M. Bogyo (2008) Application of activitybased probes to the study of enzymes involved in cancer progression. Curr. Opin. Gen. Develop. 18: 97–106.

    Article  CAS  Google Scholar 

  10. Craik, C. S., M. J. Page, and E. L. Madison (2011) Proteases as therapeutics. Biochem. J. 435: 1–16.

    Article  CAS  Google Scholar 

  11. Dixon, S. C., K. B. Knopf, and W. D. Figg (2001) The control of prostate-specific antigen expression and gene regulation by pharmacological agents. Pharmacol. Rev. 53: 73–91.

    CAS  Google Scholar 

  12. Rochefort, H., M. Garcia, M. Glondu, V. Laurent, E. Liaudet, J. M. Rey, and P. Roger (2000) Cathepsin D in breast cancer: Mechanisms and clinical applications, a 1999 overview. Clin. Chim. Acta Internat. J. Clin. Chem. 291: 157–170.

    Article  CAS  Google Scholar 

  13. Tung, C. H. (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopol. 76: 391–403.

    Article  CAS  Google Scholar 

  14. Stockholm, D., M. Bartoli, G. Sillon, N. Bourg, J. Davoust, and I. Richard (2005) Imaging calpain protease activity by multiphoton FRET in living mice. J. Mol. Biol. 346: 215–222.

    Article  CAS  Google Scholar 

  15. Ohuchi, E., I. Azumano, S. Yoshida, K. Iwata, and Y. Okada (1996) A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 7 (matrilysin) using monoclonal antibodies. Clin. Chim. Acta Intern. J. Clin. Chem. 244: 181–198.

    Article  CAS  Google Scholar 

  16. Zhao, Z., M. J. Raftery, X. M. Niu, M. M. Daja, and P. J. Russell (2004) Application of in-gel protease assay in a biological sample: Characterization and identification of urokinase-type plasminogen activator (uPA) in secreted proteins from a prostate cancer cell line PC-3. Electrophoresis 25: 1142–1148.

    Article  CAS  Google Scholar 

  17. Kim, G. B. and Y. P. Kim (2012) Analysis of protease activity using quantum dots and resonance energy transfer. Theranostics 2: 127–138.

    Article  CAS  Google Scholar 

  18. Welser, K., R. Adsley, B. M. Moore, W. C. Chan, and J. W. Aylott (2011) Protease sensing with nanoparticle based platforms. Anal. 136: 29–41.

    Article  CAS  Google Scholar 

  19. Lauer-Fields, J. L., D. Minond, P. S. Chase, P. E. Baillargeon, S. A. Saldanha, R. Stawikowska, P. Hodder, and G. B. Fields (2009) High throughput screening of potentially selective MMP-13 exosite inhibitors utilizing a triple-helical FRET substrate. Bioorg. Med. Chem. 17: 990–1005.

    Article  CAS  Google Scholar 

  20. Srinivasan, R., X. Huang, S. L. Ng, and S. Q. Yao (2006) Activity-based fingerprinting of proteases. Chem. Bio. Chem. 7: 32–36.

    CAS  Google Scholar 

  21. Sun, H., R. C. Panicker, and S. Q. Yao (2007) Activity based fingerprinting of proteases using FRET peptides. Biopol. 88: 141–149.

    Article  CAS  Google Scholar 

  22. Uttamchandani, M., K. Liu, R. C. Panicker, and S. Q. Yao (2007) Activity-based fingerprinting and inhibitor discovery of cysteine proteases in a microarray. Chem. Commun. 15: 1518–1520.

    Article  Google Scholar 

  23. Varadarajan, N., J. Gam, M. J. Olsen, G. Georgiou, and B. L. Iverson (2005) Engineering of protease variants exhibiting high catalytic activity and exquisite substrate selectivity. Proc. Nat. Acad. Sci. 102: 6855–6860.

    Article  CAS  Google Scholar 

  24. Varadarajan, N., S. Rodriguez, B. Y. Hwang, G. Georgiou, and B. L. Iverson (2008) Highly active and selective endopeptidases with programmed substrate specificities. Nature Chem. Biol. 4: 290–294.

    Article  CAS  Google Scholar 

  25. Lim, M. D. and C. S. Craik (2009) Using specificity to strategically target proteases. Bioorg. Med. Chem. 17: 1094–1100.

    Article  CAS  Google Scholar 

  26. Pollok, B. A. and R. Heim (1999) Using GFP in FRET-based applications. Trends Cell Biol. 9: 57–60.

    Article  CAS  Google Scholar 

  27. Zauner, T., R. Berger-Hoffmann, K. Muller, R. Hoffmann, and T. Zuchner (2011) Highly adaptable and sensitive protease assay based on fluorescence resonance energy transfer. Anal. Chem. 83: 7356–7363.

    Article  CAS  Google Scholar 

  28. Verheijen, J. H., N. M. Nieuwenbroek, B. Beekman, R. Hanemaaijer, H. W. Verspaget, H. K. Ronday, and A. H. Bakker (1997) Modified proenzymes as artificial substrates for proteolytic enzymes: Colorimetric assay of bacterial collagenase and matrix metalloproteinase activity using modified pro-urokinase. Biochem. J. 323: 603–609.

    CAS  Google Scholar 

  29. Fan, F., B. F. Binkowski, B. L. Butler, P. F. Stecha, M. K. Lewis, and K. V. Wood (2008) Novel genetically encoded biosensors using firefly luciferase. ACS Chem. Biol. 3: 346–351.

    Article  CAS  Google Scholar 

  30. Laxman, B., D. E. Hall, M. S. Bhojani, D. A. Hamstra, T. L. Chenevert, B. D. Ross, and A. Rehemtulla (2002) Noninvasive real-time imaging of apoptosis. Proc. Nat. Acad. Sci. 99: 16551–16555.

    Article  CAS  Google Scholar 

  31. Loening, A. M., A. M. Wu, and S. S. Gambhir (2007) Redshifted Renilla reniformis luciferase variants for imaging in living subjects. Nature Meth. 4: 641–643.

    Article  CAS  Google Scholar 

  32. Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73: 355–382.

    Article  CAS  Google Scholar 

  33. Dijkstra, B. W., J. Drenth, and K. H. Kalk (1981) Active site and catalytic mechanism of phospholipase A2. Nature 289: 604–606.

    Article  CAS  Google Scholar 

  34. Leach, C. A., X. Tian, M. R. Mattern, and B. Nicholson (2009) Detection and characterization of SUMO protease activity using a sensitive enzyme-based reporter assay. Methods Mol. Biol. 497: 269–281.

    Article  CAS  Google Scholar 

  35. Galarneau, A., M. Primeau, L. E. Trudeau, and S. W. Michnick (2002) Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat. Biotechnol. 20: 619–622.

    Article  CAS  Google Scholar 

  36. Johnsson, N. and A. Varshavsky (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc. Nat. Acad. Sci. 91: 10340–10344.

    Article  CAS  Google Scholar 

  37. Luker, K. E., M. C. Smith, G. D. Luker, S. T. Gammon, H. Piwnica-Worms, and D. Piwnica-Worms (2004) Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc. Nat. Acad. Sci. 101: 12288–12293.

    Article  CAS  Google Scholar 

  38. Dueber, J. E., B. J. Yeh, K. Chak, and W. A. Lim (2003) Reprogramming control of an allosteric signaling switch through modular recombination. Science 301: 1904–1908.

    Article  CAS  Google Scholar 

  39. Pufall, M. A. and B. J. Graves (2002) Autoinhibitory domains: modular effectors of cellular regulation. Annu. Rev. Cell Develop. Biol. 18: 421–462.

    Article  CAS  Google Scholar 

  40. Shekhawat, S. S., J. R. Porter, A. Sriprasad, and I. Ghosh (2009) An autoinhibited coiled-coil design strategy for split-protein protease sensors. J. American Chem. Soc. 131: 15284–15290.

    Article  CAS  Google Scholar 

  41. Shekhawat, S. S., S. T. Campbell, and I. Ghosh (2011) A Comprehensive panel of turn-on caspase biosensors for investigating caspase specificity and caspase activation pathways. Chem. Bio-Chem. 12: 2353–2364.

    CAS  Google Scholar 

  42. Kim, J. H., R. A. Estabrook, G. Braun, B. R. Lee, and N. O. Reich (2007) Specific and sensitive detection of nucleic acids and RNases using gold nanoparticle-RNA-fluorescent dye conjugates. Chem. Commun. 42: 4342–4344.

    Article  Google Scholar 

  43. Kim, J. H. and B. H. Chung (2010) Proteolytic fluorescent signal amplification on gold nanoparticles for a highly sensitive and rapid protease assay. Small 6: 126–131.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hyeon Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, H.K., Jung, S.T., Kim, JH. et al. Recent development of highly sensitive protease assay methods: Signal amplification through enzyme cascades. Biotechnol Bioproc E 17, 1113–1119 (2012). https://doi.org/10.1007/s12257-012-0545-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0545-9

Keywords