Abstract
Proteases are involved in almost all biological processes, and therefore, aberrant activity of many of these enzymes is an important indicator of disease. Various methods have been developed to analyze protease activity, among which, protease assays based on resonance energy transfer are currently used most widely. However, quantitative methods with relatively higher sensitivity are needed, especially for disease diagnosis at early stages. One of the strategies to achieve higher sensitivity is to implement signal amplification of the protease activity. In this review, we briefly summarize the protease assay methods based on resonance energy transfer, and then elaborate the efforts to develop sensitive protease assays through signal amplification by using enzyme cascades.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Doucet, A. and C. M. Overall (2008) Protease proteomics: Revealing protease in vivo functions using systems biology approaches. Mol. Aspects Med. 29: 339–358.
Turk, B. (2006) Targeting proteases: Successes, failures and future prospects. Nature Rev. Drug Discovery 5: 785–799.
Blum, G., S. R. Mullins, K. Keren, M. Fonovic, C. Jedeszko, M. J. Rice, B. F. Sloane, and M. Bogyo (2005) Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nature Chem. Biol. 1: 203–209.
Edwards, D. R. and G. Murphy (1998) Cancer. Proteases—invasion and more. Nature 394: 527–528.
Law, B., R. Weissleder, and C. H. Tung (2007) Protease-sensitive fluorescent nanofibers. Bioconjugate Chem. 18: 1701–1704.
Southan, C. (2001) A genomic perspective on human proteases as drug targets. Drug Discovery Today 6: 681–688.
Spaltenstein, A., W. M. Kazmierski, J. F. Miller, and V. Samano (2005) Discovery of next generation inhibitors of HIV protease. Curr. Topics Med. Chem. 5: 1589–1607.
McCawley, L. J. and L. M. Matrisian (2000) Matrix metalloproteinases: Multifunctional contributors to tumor progression. Mol. Med. Today 6: 149–156.
Paulick, M. G. and M. Bogyo (2008) Application of activitybased probes to the study of enzymes involved in cancer progression. Curr. Opin. Gen. Develop. 18: 97–106.
Craik, C. S., M. J. Page, and E. L. Madison (2011) Proteases as therapeutics. Biochem. J. 435: 1–16.
Dixon, S. C., K. B. Knopf, and W. D. Figg (2001) The control of prostate-specific antigen expression and gene regulation by pharmacological agents. Pharmacol. Rev. 53: 73–91.
Rochefort, H., M. Garcia, M. Glondu, V. Laurent, E. Liaudet, J. M. Rey, and P. Roger (2000) Cathepsin D in breast cancer: Mechanisms and clinical applications, a 1999 overview. Clin. Chim. Acta Internat. J. Clin. Chem. 291: 157–170.
Tung, C. H. (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopol. 76: 391–403.
Stockholm, D., M. Bartoli, G. Sillon, N. Bourg, J. Davoust, and I. Richard (2005) Imaging calpain protease activity by multiphoton FRET in living mice. J. Mol. Biol. 346: 215–222.
Ohuchi, E., I. Azumano, S. Yoshida, K. Iwata, and Y. Okada (1996) A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 7 (matrilysin) using monoclonal antibodies. Clin. Chim. Acta Intern. J. Clin. Chem. 244: 181–198.
Zhao, Z., M. J. Raftery, X. M. Niu, M. M. Daja, and P. J. Russell (2004) Application of in-gel protease assay in a biological sample: Characterization and identification of urokinase-type plasminogen activator (uPA) in secreted proteins from a prostate cancer cell line PC-3. Electrophoresis 25: 1142–1148.
Kim, G. B. and Y. P. Kim (2012) Analysis of protease activity using quantum dots and resonance energy transfer. Theranostics 2: 127–138.
Welser, K., R. Adsley, B. M. Moore, W. C. Chan, and J. W. Aylott (2011) Protease sensing with nanoparticle based platforms. Anal. 136: 29–41.
Lauer-Fields, J. L., D. Minond, P. S. Chase, P. E. Baillargeon, S. A. Saldanha, R. Stawikowska, P. Hodder, and G. B. Fields (2009) High throughput screening of potentially selective MMP-13 exosite inhibitors utilizing a triple-helical FRET substrate. Bioorg. Med. Chem. 17: 990–1005.
Srinivasan, R., X. Huang, S. L. Ng, and S. Q. Yao (2006) Activity-based fingerprinting of proteases. Chem. Bio. Chem. 7: 32–36.
Sun, H., R. C. Panicker, and S. Q. Yao (2007) Activity based fingerprinting of proteases using FRET peptides. Biopol. 88: 141–149.
Uttamchandani, M., K. Liu, R. C. Panicker, and S. Q. Yao (2007) Activity-based fingerprinting and inhibitor discovery of cysteine proteases in a microarray. Chem. Commun. 15: 1518–1520.
Varadarajan, N., J. Gam, M. J. Olsen, G. Georgiou, and B. L. Iverson (2005) Engineering of protease variants exhibiting high catalytic activity and exquisite substrate selectivity. Proc. Nat. Acad. Sci. 102: 6855–6860.
Varadarajan, N., S. Rodriguez, B. Y. Hwang, G. Georgiou, and B. L. Iverson (2008) Highly active and selective endopeptidases with programmed substrate specificities. Nature Chem. Biol. 4: 290–294.
Lim, M. D. and C. S. Craik (2009) Using specificity to strategically target proteases. Bioorg. Med. Chem. 17: 1094–1100.
Pollok, B. A. and R. Heim (1999) Using GFP in FRET-based applications. Trends Cell Biol. 9: 57–60.
Zauner, T., R. Berger-Hoffmann, K. Muller, R. Hoffmann, and T. Zuchner (2011) Highly adaptable and sensitive protease assay based on fluorescence resonance energy transfer. Anal. Chem. 83: 7356–7363.
Verheijen, J. H., N. M. Nieuwenbroek, B. Beekman, R. Hanemaaijer, H. W. Verspaget, H. K. Ronday, and A. H. Bakker (1997) Modified proenzymes as artificial substrates for proteolytic enzymes: Colorimetric assay of bacterial collagenase and matrix metalloproteinase activity using modified pro-urokinase. Biochem. J. 323: 603–609.
Fan, F., B. F. Binkowski, B. L. Butler, P. F. Stecha, M. K. Lewis, and K. V. Wood (2008) Novel genetically encoded biosensors using firefly luciferase. ACS Chem. Biol. 3: 346–351.
Laxman, B., D. E. Hall, M. S. Bhojani, D. A. Hamstra, T. L. Chenevert, B. D. Ross, and A. Rehemtulla (2002) Noninvasive real-time imaging of apoptosis. Proc. Nat. Acad. Sci. 99: 16551–16555.
Loening, A. M., A. M. Wu, and S. S. Gambhir (2007) Redshifted Renilla reniformis luciferase variants for imaging in living subjects. Nature Meth. 4: 641–643.
Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73: 355–382.
Dijkstra, B. W., J. Drenth, and K. H. Kalk (1981) Active site and catalytic mechanism of phospholipase A2. Nature 289: 604–606.
Leach, C. A., X. Tian, M. R. Mattern, and B. Nicholson (2009) Detection and characterization of SUMO protease activity using a sensitive enzyme-based reporter assay. Methods Mol. Biol. 497: 269–281.
Galarneau, A., M. Primeau, L. E. Trudeau, and S. W. Michnick (2002) Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat. Biotechnol. 20: 619–622.
Johnsson, N. and A. Varshavsky (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc. Nat. Acad. Sci. 91: 10340–10344.
Luker, K. E., M. C. Smith, G. D. Luker, S. T. Gammon, H. Piwnica-Worms, and D. Piwnica-Worms (2004) Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc. Nat. Acad. Sci. 101: 12288–12293.
Dueber, J. E., B. J. Yeh, K. Chak, and W. A. Lim (2003) Reprogramming control of an allosteric signaling switch through modular recombination. Science 301: 1904–1908.
Pufall, M. A. and B. J. Graves (2002) Autoinhibitory domains: modular effectors of cellular regulation. Annu. Rev. Cell Develop. Biol. 18: 421–462.
Shekhawat, S. S., J. R. Porter, A. Sriprasad, and I. Ghosh (2009) An autoinhibited coiled-coil design strategy for split-protein protease sensors. J. American Chem. Soc. 131: 15284–15290.
Shekhawat, S. S., S. T. Campbell, and I. Ghosh (2011) A Comprehensive panel of turn-on caspase biosensors for investigating caspase specificity and caspase activation pathways. Chem. Bio-Chem. 12: 2353–2364.
Kim, J. H., R. A. Estabrook, G. Braun, B. R. Lee, and N. O. Reich (2007) Specific and sensitive detection of nucleic acids and RNases using gold nanoparticle-RNA-fluorescent dye conjugates. Chem. Commun. 42: 4342–4344.
Kim, J. H. and B. H. Chung (2010) Proteolytic fluorescent signal amplification on gold nanoparticles for a highly sensitive and rapid protease assay. Small 6: 126–131.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yoon, H.K., Jung, S.T., Kim, JH. et al. Recent development of highly sensitive protease assay methods: Signal amplification through enzyme cascades. Biotechnol Bioproc E 17, 1113–1119 (2012). https://doi.org/10.1007/s12257-012-0545-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12257-012-0545-9

