Skip to main content
Log in

Influence of the thermochemical sludge pretreatment on the nitrification of A/O reactor with the removal of phosphorus by simultaneous precipitation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In the present study, a laboratory scale anoxic/oxic (A/O) reactor is used for the removal of nutrient and sludge reduction. Phosphorus removal was achieved through simultaneous precipitation, and sludge production was reduced through thermochemical pretreatment. The main objective of the study was to investigate the influence of sludge pretreatment on the nitrification rate. Total phosphorus in the effluent was maintained around 0.5 ∼ 1.0 mg/L by simultaneous precipitation, using coagulant alum at 2.2 mole ratio. Before simultaneous precipitation, the nitrification rate of the A/O reactor was found to be 0.050 g N-NH4 +/g MLVSS.d. The thermochemical sludge pretreatment began on the 120th day at pH 11 and 80°C. The initiation of sludge pretreatment brought about a significant reduction of the A/O reactor nitrification rate, which fell to 0.038 g N-NH4 +/g MLVSS/day. The effect of sludge pretreatment was reflected in the reduction of the nitrogen removal efficiency from 85 to 74%. Recycling of the thermochemically pretreated sludge accounted for 57% sludge reduction, which had an adverse influence on the nitrification rate of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tchobanoglous, G., F. L. Burton, and H. D. Stensel (2003) Wastewater engineering: Treatment, disposal and reuse. 4th ed. McGraw-Hill, NY, USA.

    Google Scholar 

  2. Banu, R. J., K. -U. Do, S. Kaliappan, and I. -T. Yeom (2009) Effect of alum on nitrification during simultaneous phosphorus removal in anoxic/oxic reactor. Biotechnol. Bioproc. Eng. 14: 543–548.

    Article  CAS  Google Scholar 

  3. Oh, Y. -K., K. -R. Lee, K. -B. Ko, and I. -T. Yeom (2007) Effects of chemical sludge disintegration on the performances of wastewater treatment by membrane bioreactor. Wat. Res. 41: 2665–2671.

    Article  CAS  Google Scholar 

  4. Davis, R. D. and J. E. Hall (2007) Production, treatment and disposal of wastewater sludge in Europe from a UK perspective. Eur. Wat. Pollut. Control 7: 9–17.

    Google Scholar 

  5. Spellman, F. R. (1997) Wastewater biosolids to compost. pp. 223–235. Technomic Publishing Company, Lancaster, PA, USA.

    Google Scholar 

  6. Liu, Y. and J. H. Tay (2001) Strategy for minimization of excess sludge production from the activated sludge process. Biotechnol. Adv. 19: 97–107.

    Article  Google Scholar 

  7. Do, K. -U., J. R. Banu, I. -J. Chung, and I. -T. Yeom (2009) Effect of thermochemical sludge disintegration on sludge reduction and on performances of anoxic-aerobic membrane bioreactor treating low strength domestic wastewater. J. Chem. Technol. Biot. 84: 1350–1355.

    Article  CAS  Google Scholar 

  8. Wei, Y. S., R. T. Van Houten, A. R. Borger, D. H. Eikelboom, and Y. B. Fan (2003) Minimization of excess sludge production for biological wastewater treatment. Wat. Res. 37: 4453–4467.

    Article  CAS  Google Scholar 

  9. Muller, J. A. (2000) Disintegration as a key-step in sewage sludge treatment. Wat. Sci. Technol. 41: 123–130.

    CAS  Google Scholar 

  10. Ichinari, T., A. Ohtsubo, T. Ozawa, K. Hasegawa, K. Teduka, T. Oguchi, and Y. Kiso (2008) Wastewater treatment performance and sludge reduction properties of a household wastewater treatment system combined with an aerobic sludge digestion unit. Proc. Biochem. 43: 722–728.

    Article  CAS  Google Scholar 

  11. Zhang, G., P. Zhang, J. Yang, and Y. Chen (2007) Ultrasonic reduction of excess sludge from the activated sludge system. J. Hazard. Mater. 145: 515–519.

    Article  CAS  Google Scholar 

  12. Tanaka, S., T. Kobayashi, K. Kamiyama, and M. L. Bildan (1997) Effects of thermochemical pre-treatment on the anaerobic digestion of waste activated sludge. Wat. Sci. Technol. 8: 209–215.

    Google Scholar 

  13. Liu, Y. (2003) Chemically reduced excess sludge production in the activated sludge process. Chemosphere. 50: 1–7.

    Article  CAS  Google Scholar 

  14. Xie, W. M., B. J. Ni, G. P. Sheng, H. Q. Yu, and M. Yang (2010) Substrate consumption and excess sludge reduction of activated sludge in the presence of uncouplers: A modeling approach. Appl. Microbiol. Biotechnol. 85: 2001–2008.

    Article  CAS  Google Scholar 

  15. Rocher, M., G. Goma, A. P. Begue, L. Louvel, and J. L. Rols (1999) Towards a reduction in excess sludge production in activated sludge processes: Biomass physicochemical treatment and biodegradation. Appl. Microbiol. Biotechnol. 51: 883–890.

    Article  CAS  Google Scholar 

  16. Wei, Y., Y. Wang, X. Guo, and J. Liu (2009) Sludge reduction potential of the activated sludge process by integrating an oligochaete reactor. J. Hazard. Mater. 163: 87–91.

    Article  CAS  Google Scholar 

  17. Kim, J., C. Park, T. -H. Kim, M. Lee, S. -W. Kim, and J. Lee (2003) Effects of various pre-treatment for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95: 271–275.

    CAS  Google Scholar 

  18. Khursheed, A. and A. A. Kazmi (2011) Retrospective of ecological approaches to excess sludge reduction. Wat. Res. 45: 4287–4310.

    Article  CAS  Google Scholar 

  19. Banu, J. R., K. -U. Do, and I. -T. Yeom (2008) Effect of ferrous sulphate on nitrification during simultaneous phosphorus removal from domestic wastewater using a laboratory scale anoxic/oxic reactor. World J. Microbiol. Biotechnol. 24: 2981–2986.

    Article  CAS  Google Scholar 

  20. Valo, A., H. Carrere, and J. P. Delegenes (2004) Thermal, chemical and thermo-chemical pre-treatment of waste activated sudge for anaerobic digestion. J. Chem. Technol. Biotechnol. 79: 1197–1203.

    Article  CAS  Google Scholar 

  21. Neyens, E., J. Baeyens, and C. Creemers (2003) Alkaline thermal sludge hydrolysis. J. Hazard. Mater. 97: 295–314.

    Article  CAS  Google Scholar 

  22. Do, K. -U, N. T. T. Ha, R. J. Banu, K. Kim, J. Heo, and I. -T. Yeom (2010). Effect of thermochemical pretreatment on the biodegradability of sludge from a biological wastewater treatment system. Maejo. Int. J. Sci. Technol. 4: 250–260.

    CAS  Google Scholar 

  23. Baeza, J. A., D. Gabriel, and J. Lafunente (2004) Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP). Proc. Biochem. 39: 1615–1624.

    Article  CAS  Google Scholar 

  24. APHA (2005) Standard Methods for the Examination of Water and Wastewater. 21st ed., American Public Health Association, Washington, USA.

    Google Scholar 

  25. Tanaka, S. and K. Kamiyama (2002) Thermochemical pre-treatment in the anaerobic digestion of waste activated sludge. Wat. Sci. Technol. 46: 173–179.

    CAS  Google Scholar 

  26. Vlyssides, A. G. and K. P. Karlis (2004) Thermal-alkaline solubilisation of waste activated sludge as a pretreatment stage for anaerobic digestion. Biores. Technol. 91: 201–206.

    Article  CAS  Google Scholar 

  27. Bougrier, C., J. P. Delgenès, and H. Carrère (2008) Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochem. Eng. J. 34: 20–27.

    Article  Google Scholar 

  28. Baier, U. and P. Schmidheiny (1997) Enhanced anaerobic degradation on mechanically disintegrated sludge. Wat. Sci. Technol. 36: 137–143.

    Article  CAS  Google Scholar 

  29. Appels, J. D., B. Van der Bruggen, J. Van Impe, and R. Dewil (2010) Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Biores. Technol. 101: 5743–5748.

    Article  CAS  Google Scholar 

  30. Mervat, E. and A. W. Logan (1996) Removal of phosphorus from secondary effluent by a matrix filter. Desalination 106: 247–253.

    Google Scholar 

  31. de Haas, D. W., M. C. Wentzel, and G. A. Ekama (2000) The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological enhanced phosphate removal. Part 1: Literature review. Water SA. 26: 439–452

    Google Scholar 

  32. Sakai, Y., T. Fukase, H. Yasui, and M. Shibata (1997) An activated sludge process without excess sludge production. Wat. Sci. Technol. 36: 163–170.

    Article  CAS  Google Scholar 

  33. Yoon, S. H., H. S. Kim, and S. H. Lee (2004) Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production. Proc. Biochem. 39: 1923–1929.

    Article  CAS  Google Scholar 

  34. Yasui, H. and M. Shibata (1994) An innovative approach to reduce excess sludge production in the activated sludge process. Wat. Sci. Technol. 30: 11–20.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rajesh Banu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, KU., Rajesh Banu, J., Kaliappan, S. et al. Influence of the thermochemical sludge pretreatment on the nitrification of A/O reactor with the removal of phosphorus by simultaneous precipitation. Biotechnol Bioproc E 18, 313–320 (2013). https://doi.org/10.1007/s12257-012-0492-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0492-5

Keywords

Navigation