Skip to main content
Log in

Functions of membrane-bound alcohol dehydrogenase and aldehyde dehydrogenase in the bio-oxidation of alcohols in Gluconobacter oxydans DSM 2003

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study a new insight was provided to understand the functions of membrane-bound alcohol dehydrogenase (mADH) and aldehyde dehydrogenase (mALDH) in the bio-oxidation of primary alcohols, diols and poly alcohols using the resting cells of Gluconobacter oxydans DSM 2003 and its mutant strains as catalyst. The results demonstrated that though both mADH and mALDH participated in most of the oxidation of alcohols to their corresponding acid, the exact roles of these enzymes in each reaction might be different. For example, mADH played a key role in the oxidation of diols to its corresponding organic acid in G. oxydans, but it was dispensable when the primary alcohols were used as substrates. In contrast to mADH, mALDH appears to play a relatively minor role in organic acid-producing reactions because of the possible presence of other isoenzymes. Aldehydes were, however, found to be accumulated in the mALDH-deficient strain during the oxidation of alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asai, T. (1968) Acetic acid bacteria: Classification and Biochemical Activities. pp. 1–343. University of Tokyo Press.

  2. Gatfield, I. and T. Sand (1988) European Patent 289822.

  3. Svitel, J. and E. Sturdík (1995) n-Propanol conversion to propionic acid by Gluconobacter oxydans. Enz. Microbial. Technol. 17: 546–550.

    Article  CAS  Google Scholar 

  4. Molinari, F. (1997) Multigram-scale production of aliphatic carboxylic acids by oxidation of alcohols with Acetobacter pasteurianus NCIMB 11664. J. Chem. Technol. Biotechnol. 70: 294–298.

    Article  CAS  Google Scholar 

  5. Wei, G., X. Yang, W. Zhou, J. Lin, and D. Wei (2009) Adsorptive bioconversion of ethylene glycol to glycolic acid by Gluconobacter oxydans DSM 2003. Biochem. Eng. J. 47: 127–131.

    Article  CAS  Google Scholar 

  6. Su, W., Z. Chang, K. Gao, and D. Wei (2004) Enantioselective oxidation of racemic 1, 2-propanediol to D-(-)-lactic acid by Gluconobacter oxydans. Tetrahedron: Asymm. 15: 1275–1277.

    Article  CAS  Google Scholar 

  7. Faveri, D., P. Torre, F. Molinari, P. Perego, and A. Converti (2003) Carbon material balances and bioenergetics of 2, 3-butanediol bio-oxidation by Acetobacter hansenii. Enz. Microbial. Technol. 33: 708–719.

    Article  Google Scholar 

  8. Molinari, F., R. Gandolfi, R. Villa, E. Urban, and A. Kiener (2003) Enantioselective oxidation of prochiral 2-methyl-1, 3-propandiol by Acetobacter pasteurianus. Tetrahedron: Asymm. 14: 2041–2043.

    Article  CAS  Google Scholar 

  9. De Muynck, C., C. Pereira, W. Soetaert, and E. Vandamme (2006) Dehydrogenation of ribitol with Gluconobacter oxydans: Production and stability of L-ribulose. J. Biotechnol. 125: 408–415.

    Article  Google Scholar 

  10. Rollini, M. and M. Manzoni (2005) Bioconversion of D-galactitol to tagatose and dehydrogenase activity induction in Gluconobacter oxydans. Proc. Biochem. 40: 437–444.

    Article  CAS  Google Scholar 

  11. Yang, X. P., L. J. Wei, J. P. Lin, B. Yin, and D. Z. Wei (2008) Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for production of 6-(2-hydroxyethyl) amino-6-deoxy-L-sorbose. Appl. Environ. Microbiol. 74: 5250–5253.

    Article  CAS  Google Scholar 

  12. Moonmangmee, D. (2002) L-erythrulose production by oxidative fermentation is catalyzed by PQQ-containing membranebound dehydrogenase. Biosci. Biotechnol. Biochem. 66: 307–318.

    Article  CAS  Google Scholar 

  13. Hoshino, T., T. Sugisawa, M. Shinjoh, N. Tomiyama, and T. Miyazaki (2002) Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255 enzymatic and genetic characterization. Biochim. Biophys. Acta 1647: 278–288.

    Google Scholar 

  14. Matsushita, K. (2003) 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl. Env. Microbiol. 69: 1959–1966.

    Article  CAS  Google Scholar 

  15. Gupta, A., V. Verma, and G. Qazi (1997) Transposon induced mutation in Gluconobacter oxydans with special reference to its direct-glucose oxidation metabolism. FEMS Microbiol. Lett. 147: 181–188.

    Article  CAS  Google Scholar 

  16. Wei, L. J., X. P. Yang, K. L. Gao, J. P. Lin, S. L. Yang, Q. Hua, and D. Z. Wei (2010) Characterization of enzymes in the oxidation of 1,2-propanediol to D-(-)-lactic acid by Gluconobacter oxydans DSM 2003. Mol. Biotechnol. 46: 26–33.

    Article  CAS  Google Scholar 

  17. Segal, L. (1951) Fuchsin-sulfite reagent in colorimetric determination of formaldehyde. Anal. Chem. 23: 1499–1499.

    Article  CAS  Google Scholar 

  18. Goodwin, P. and C. Anthony (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv. Microbial. Physiol. 40: 3–82.

    Google Scholar 

  19. Matsushita, K., Y. Takaki, E. Shinagawa, M. Ameyama, and O. Adachi (1992) Ethanol oxidase respiratory chain of acetic acid bacteria. Reactivity with ubiquinone of pyrroloquinoline quinone-dependent alcohol dehydrogenases purified from Acetobacter aceti and Gluconobacter suboxydans. Biosci. Biotechnol. Biochem. 56: 304–310.

    Article  CAS  Google Scholar 

  20. Matsushita, K., H. Toyama, and O. Adachi (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv. Microbial. Physiol. 36: 247–301.

    Article  CAS  Google Scholar 

  21. Chinnawirotpisan, P. (2003) Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NADdependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU1108. J. Biosci. Bioeng. 96: 564–571.

    Article  CAS  Google Scholar 

  22. Kondo, K. and S. Horinouchi (1997) Characterization of an insertion sequence, IS12528, from Gluconobacter suboxydans. Appl. Env. Microbiol. 63: 1139–1142.

    CAS  Google Scholar 

  23. Gandolfi, R., N. Ferrara, and F. Molinari (2001) An easy and efficient method for the production of carboxylic acids and aldehydes by microbial oxidation of primary alcohols. Tetrahedron Lett. 42: 513–514.

    Article  CAS  Google Scholar 

  24. Wei, G. (2009) High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production. J. Ind. Microbiol. Biotechnol. 36: 1029–1034.

    Article  CAS  Google Scholar 

  25. Schweiger, P. and U. Deppenmeier (2010) Analysis of aldehyde reductases from Gluconobacter oxydans 621H. Appl. Microbiol. Biotechnol. 85: 1025–1031.

    Article  CAS  Google Scholar 

  26. Bamoharram, F., M. Heravi, M. Roshani, A. Gharib, and M. Jahangir (2006) A catalytic method for synthesis of γ-butyrolactone, ɛ-caprolactone and 2-cumaranone in the presence of Preyssler’s anion, [NaP5W30O110]14−, as a green and reusable catalyst. J. Mol. Catal. A: Chem, 252: 90–95.

    Article  CAS  Google Scholar 

  27. León, R., D. Prazeres, P. Fernandes, F. Molinari, and J. Cabral (2001) A multiphasic hollow fiber reactor for the whole-cell bioconversion of 2-methyl-1, 3-propanediol to (R)-β-hydroxyisobutyric acid. Biotechnol. Prog. 17: 468–473.

    Article  Google Scholar 

  28. León, R., D. Prazeres, F. Molinari, J. Cabral (2002) Microbial stereoselective oxidation of 2-methyl-1, 3-propanediol to (R)-β-hydroxyisobutyric acid in aqueous/organic biphasic systems. Biocatal. Biotransformation 20: 201–207.

    Article  Google Scholar 

  29. Hann, R., E. Tilden, and C. Hudson (1938) The oxidation of sugar alcohols by Aacetobacter suboxydans. J. Amer. Chem. Soc. 60: 1201–1203.

    Article  CAS  Google Scholar 

  30. Habe, H. (2010) Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans. Biosci. Biotechnol. Biochem. 74: 1391–1395.

    Article  CAS  Google Scholar 

  31. Celik, D., E. Bayraktar, and D. Mehmetoglu (2004) Biotransformation of 2-phenylethanol to phenylacetaldehyde in a two-phase fed-batch system. Biochem. Eng. J. 17: 5–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Hua or Dong-Zhi Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, LJ., Zhou, Jl., Zhu, Dn. et al. Functions of membrane-bound alcohol dehydrogenase and aldehyde dehydrogenase in the bio-oxidation of alcohols in Gluconobacter oxydans DSM 2003. Biotechnol Bioproc E 17, 1156–1164 (2012). https://doi.org/10.1007/s12257-012-0339-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0339-0

Keywords