Biotechnology and Bioprocess Engineering

, Volume 17, Issue 5, pp 1048–1054 | Cite as

Optimization of culture conditions for the production of Pleuromutilin from Pleurotus Mutilus using a hybrid method based on central composite design, neural network, and particle swarm optimization

  • Latifa Khaouane
  • Chérif Si-Moussa
  • Salah Hanini
  • Othmane Benkortbi
Research Paper


This study aims at optimizing the culture conditions (agitation speed, temperature and pH) of the Pleuromutilin production by Pleurotus mutilus. A hybrid methodology including a central composite design (CCD), an artificial neural network (ANN), and a particle swarm optimization algorithm (PSO) was used. Specifically, the CCD and ANN were used for conducting experiments and modeling the non-linear process, respectively. The PSO was used for two purposes: Replacing the standard back propagation in training the ANN (PSONN) and optimizing the process. In comparison to the response surface methodology (RSM) and to the Bayesian regularization neural network (BRNN), PSONN model has shown the highest modeling ability. Under this hybrid approach (PSONN-PSO), the optimum levels of culture conditions were: 242 rpm agitation speed; temperature 26.88 and pH 6.06. A production of 10,074 ± 500 μg/g, which was in very good agreement with the prediction (10,149 μg/g), was observed in verification experiment. The hybrid PSONN-PSO gave a yield of 27.5% greater than that obtained by the hybrid BRNN-PSO. This work shows that the combination of PSONN with the generic PSO algorithm has a good predictability and a good accuracy for bio-process optimization. This hybrid approach is sufficiently general and thus can be helpful for modeling and optimization of other industrial bio-processes.


pleuromutilin Pleurotus mutilus culture conditions central composite design neural network particle swarm optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, M. and D. Krouse (1999) Strategies for improving fermentation medium performance: a review. J. Ind. Microbiol. Biotechnol. 23: 456–475.CrossRefGoogle Scholar
  2. 2.
    Desai, K. M., S. K. Akolkar, Y. P. Badhe, S. S. Tambe, and S. S. Lele (2006) Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques. Proc. Biochem. 41: 1842–1848.CrossRefGoogle Scholar
  3. 3.
    Desai, K. M., S. A. Survase, P. S. Saudagar, S. S. Lele, and R. S. Singhal (2008) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan. Biochem. Eng. J. 41: 266–273.CrossRefGoogle Scholar
  4. 4.
    Kim, H. O., J. M. Lim, J. H. Joo, S. W. Kim, H. J. Hwang, J. W. Choi, and J. W. Yun (2005) Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresour. Technol. 96: 1175–1182.CrossRefGoogle Scholar
  5. 5.
    Xiong, Z. -Q., X. -R. Tu, and G. -Q. Tu (2008) Optimization of medium composition for actinomycin X2 production by Streptomyces spp JAU4234 using response surface methodology. J. Ind. Microbiol. Biotechnol. 35: 729–734.CrossRefGoogle Scholar
  6. 6.
    Gao, H., M. Liu, J. Liu, H. Dai, X. Zhou, X. Liu, Y. Zhuo, W. Zhang, and L. Zhang (2009) Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour. Technol. 100: 4012–4016.CrossRefGoogle Scholar
  7. 7.
    Burkert, J. F. M., F. Maugeri, and M. I. Rodrigues (2004) Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresour. Technol. 91: 77–84.CrossRefGoogle Scholar
  8. 8.
    Kalil, S. J., F. Maugeri, and M. I. Rodrigues (2000) Response surface analysis and simulation as a tool for bioprocess design and optimization. Proc. Biochem. 35: 539–550.CrossRefGoogle Scholar
  9. 9.
    Zafar, M., S. Kumar, S. Kumar, and A. K. Dhiman (2012) Artificial intelligence based modeling and optimization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production process by using Azohydromonas lata MTCC 2311 from cane molasses supplemented with volatile fatty acids: A genetic algorithm paradigm. Bioresour. Technol. 104: 631–641.CrossRefGoogle Scholar
  10. 10.
    Banik, R. M., A. Santhiagu, and S. N. Upadhyay (2007) Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresour. Technol. 98: 792–797.CrossRefGoogle Scholar
  11. 11.
    Ba, D. and Ý. H. Boyacý (2007) Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J. Food Eng. 78: 846–854.CrossRefGoogle Scholar
  12. 12.
    Singh, A., A. Majumder, and A. Goyal (2008) Artificial intelligence based optimization of exocellular glucansucrase production from Leuconostoc dextranicum NRRL B-1146. Bioresour. Technol. 99: 8201–8206.CrossRefGoogle Scholar
  13. 13.
    Tompos, A., J. L. Margitfalvi, E. Tfirst, and K. Heberger (2007) Predictive performance of “highly complex” artificial neural networks. Appl. Catal. A 324: 90–93.CrossRefGoogle Scholar
  14. 14.
    Zhang, Y., J. Xu, Z. Yuan, H. Xu, and Q. Yu (2010) Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresour. Technol. 101: 3153–3158.CrossRefGoogle Scholar
  15. 15.
    Eberhart, R. C. and J. Kennedy (1995) A new optimizer using particles swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. October 4–6. Nagoya, Japan.Google Scholar
  16. 16.
    Zhao, Z. and X. Gu (2006) Particle swarm optimization based algorithm for bilevel programming problems. Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications. October 16–18. Jinan.Google Scholar
  17. 17.
    Parsopoulos, K. E. and M. N. Vrahatis (2002) Recent approaches to global optimization problems through particle swarm optimization. Nat. Comput. 1: 235–306.CrossRefGoogle Scholar
  18. 18.
    Zhang, J. -R., J. Zhang, T. -M. Lok, and M. R. Lyu (2007) A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training. Appl. Math. Comput. 185: 1026–1037.CrossRefGoogle Scholar
  19. 19.
    Lazzús, J. (2009) Estimation of density as a function of temperature and pressure for imidazolium-based ionic liquids using a multilayer net with particle swarm optimization. Int. J. Thermophys. 30: 883–909.CrossRefGoogle Scholar
  20. 20.
    Shen, Q., W. -M. Shi, X. -P. Yang, and B. -X. Ye (2006) Particle swarm algorithm trained neural network for QSAR studies of inhibitors of platelet-derived growth factor receptor phosphorylation. Eur. J. Pharm. Sci. 28: 369–376.CrossRefGoogle Scholar
  21. 21.
    Cockshott, A. R. and B. E. Hartman (2001) Improving the fermentation medium for Echinocandin B production part II: Particle swarm optimization. Proc. Biochem. 36: 661–669.CrossRefGoogle Scholar
  22. 22.
    Liu, L., J. Sun, D. Zhang, G. Du, J. Chen, and W. Xu (2009) Culture conditions optimization of hyaluronic acid production by Streptococcus zooepidemicus based on radial basis function neural network and quantum-behaved particle swarm optimization algorithm. Enz.. Microb. Technol. 44: 24–32.CrossRefGoogle Scholar
  23. 23.
    Huang, J., L. -H. Mei, and J. Xia (2007) Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA. Biotechnol. Bioeng. 96: 924–931.CrossRefGoogle Scholar
  24. 24.
    Chau, K. W. (2006) Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 329: 363–367.CrossRefGoogle Scholar
  25. 25.
    Lu, Z. -M., J. -Y. Lei, H. -Y. Xu, J. -S. Shi, and Z. -H. Xu (2011) Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques. Appl. Microbiol. Biotechnol. 92: 371–379.CrossRefGoogle Scholar
  26. 26.
    Rosa, S. M., M. A. Soria, C. G. Vélez, and M. A. Galvagno (2010) Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Bioresour. Technol. 101: 2367–2374.CrossRefGoogle Scholar
  27. 27.
    Kumar, S., M. Zafar, J. K. Prajapati, S. Kumar, and S. Kannepalli (2011) Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution. J. Hazard. Mater. 185: 287–294.CrossRefGoogle Scholar
  28. 28.
    Ebbesen, S., P. Kiwitz, and L. Guzzella (2012) A Generic Particle Swarm Optimization Matlab Function. Accessed 1 December 2011.
  29. 29.
    Jiang, Y., T. Hu, C. Huang, and X. Wu (2007) An improved particle swarm optimization algorithm. Appl. Math. Comput. 193: 231–239.CrossRefGoogle Scholar
  30. 30.
    Buchanan, R. L. and L. K. Bagi (1994) Expansion of response surface models for the growth of Escherichia coli O157: H7 to include sodium nitrite as a variable. Int. J. Food Microbiol. 23: 317–332.CrossRefGoogle Scholar
  31. 31.
    Panagou, E. Z. and V. S. Kodogiannis (2009) Application of neural networks as a non-linear modelling technique in food mycology. Expert Syst. Appl. 36: 121–131.CrossRefGoogle Scholar
  32. 32.
    Ratkowsky, D. A. (1990) Handbook of nonlinear regression models. Marcel Dekker Inc., NY, USA.Google Scholar
  33. 33.
    Andersson, M. and P. Adlercreutz (1999) Evaluation of simple enzyme kinetics by response surface modelling. Biotechnol. Tech. 13: 903–907.CrossRefGoogle Scholar
  34. 34.
    Beg, Q. K., R. K. Saxena, and R. Gupta (2002) Kinetic constants determination for an alkaline protease from Bacillus mojavensis using response surface methodology. Biotechnol. Bioeng. 78: 289–295.CrossRefGoogle Scholar
  35. 35.
    Singh, V., M. Khan, S. Khan, and C. Tripathi (2009) Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm. Appl. Microbiol. Biotechnol. 82: 379–385.CrossRefGoogle Scholar
  36. 36.
    Gurunathan, B. and R. Sahadevan (2011) Design of experiments and artificial neural network linked genetic algorithm for modeling and optimization of L-asparaginase production by Aspergillus terreus MTCC 1782. Biotechnol. Bioproc. Eng. 16: 50–58.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Latifa Khaouane
    • 1
    • 2
  • Chérif Si-Moussa
    • 1
    • 2
  • Salah Hanini
    • 1
    • 2
  • Othmane Benkortbi
    • 1
    • 2
  1. 1.Laboratoire de Biomatériaux et Phénomènes de Transport (LBMPT)Université de MédéaMédéaAlgeria
  2. 2.Chérif Si-Moussa, Salah Hanini, Othmane Benkortbi Faculté des Sciences et de la TechnologieUniversité de MédéaMédéaAlgeria

Personalised recommendations