Skip to main content
Log in

Identification of the first archaeal arylsulfatase from Pyrococcus furiosus and its application to desulfatation of agar

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A gene encoding a putative arylsulfatase from the hyperthermophilic archaeon Pyrococcus furiosus was identified, cloned, and expressed as a fusion protein with a Sce VMA intein and chitin binding domain (CBD) residue. The gene (PF1345) from P. furiosus encoding a 35 kDa protein showed some similarity (17 ∼ 19%) with other arylsulfatases from the bacteria. The recombinant fusion arylsulfatase was overexpressed in E. coli and partially purified. Its molecular mass was estimated to be 90 kDa by SDS-PAGE. The optimal temperature and pH for arylsulfatase activity were found to be 45°C and 9.5, respectively. Various divalent cations (Ca2+, Mg2+, Co2+, Cu2+, Zn2+, and Mn2+) slightly activated the arylsulfatase activity in a narrow range of concentrations (below 0.5 mM), whereas Zn2+ concentrations above 2.0 mM significantly inhibited the activity. After the reaction of agar with recombinant fusion arylsulfatase for 12 h at 50°C, 75% of the sulfate in the agar was removed, and the DNA migration was greatly enhanced. Therefore, the arylsulfatase in this study could be applicable for the production of electrophoretic grade agarose by removing sulfate groups in agar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kertesz, M. A. (1999) Riding the sulfur cycle-metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol. Rev. 24: 135–175.

    Google Scholar 

  2. Melo, M. R. S., J. P. A. Feitosa, and A. L. P. Freitas (2002) Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohyd. Polym. 49: 491–498.

    Article  CAS  Google Scholar 

  3. Milanesi, A. A. and J. W. C. Bind (1972) Lysosomal enzymes in aquatic species II. Distribution and particle properties of thermally acclimated muscle lysosomes of rainbow trout Salmo gairdeneri. Comp. Biochem. Physiol. 41: 473–491.

    Google Scholar 

  4. Kim, D. E., K. H. Kim, Y. J. Bae, J. H. Lee, Y. H. Jang, and S. W. Nam (2005) Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora. Protein Expr. Purif. 39: 107–115.

    Article  CAS  Google Scholar 

  5. Lim, J. M., Y. H. Jang, H. R. Kim, J. K. Kim, and S. W. Nam (2004) Overexpression of arylsulfatase in E. coli and its application to desulfation of agar. J. Microbiol. Biotechnol. 14: 777–782.

    CAS  Google Scholar 

  6. Miech, C., T. Dierks, T. Selmer, K. von Figura, and B. Schmidt (1998) Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. J. Biol. Chem. 273: 4835–4837.

    Article  CAS  Google Scholar 

  7. Henderson, M. J. and F. H. Milazzo (1979) Arylsulfatase in Salmonella typhimurium: Detection and influence of carbon source and tyramine on its synthesis. J. Bacteriol. 139: 80–87.

    CAS  Google Scholar 

  8. Fowler, L. R. and D. H. Rammler (1963) Sulfur metabolism of Aerobacter aerogenes. II. The purification and some properties of a sulfatase. Biochem. 208: 230–237.

    Google Scholar 

  9. Murooka, Y., M. H. Yim, and T. Harada (1980) Formation and purification of Serratia marcescens arylsulfatase. Appl. Env. Microbiol. 39: 812–817.

    CAS  Google Scholar 

  10. Beil, S., H. Kehrli, J. Peter, W. Staudenmann, A. M. Cook, T. Leisinger, and M. A. Kertesz (1995) Purification and characterization of the arylsulfatase synthesized by Pseudomonas aeruginosa PAO during growth in sulfate-free medium and cloning of the arylsulfatase gene (atsA). Eur. J. Biochem. 229: 385–394.

    Article  CAS  Google Scholar 

  11. Barbeyron, T., P. Potin, C. Richard, O. Collin, and B. Kloareg (1995) Arylsulfatase from Alteromonas carrageenovora. Microbiol. 141: 2897–2904.

    Article  CAS  Google Scholar 

  12. Robb, F. T., D. L. Maeder, J. R. Brown, J. DiRuggiero, M. D. Stump, R. K. Yeh, R. B. Weiss, and D. M. Dunn (2001) Genomic sequence of hyperthermophile, Pyrococcus furiosus: Implications for physiology and enzymology. Methods Enzymol. 330: 134–157.

    Article  CAS  Google Scholar 

  13. Maeder, D. L., I. Anderson, T. S. Brettin, D. C. Bruce, P. Gilna, C. S. Han, A. Lapidus, W. W. Metcalf, E. Saunders, R. Tapia, and K. R. Sowers (2006) The Methanosarcina barkeri genome: Comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J. Bacteriol. 188: 7922–7931.

    Article  CAS  Google Scholar 

  14. Baliga, N. S., R. Bonneau, M. T. Facciotti, M. Pan, G. Glusman, E. W. Deutsch, P. Shannon, Y. Chiu, R. S. Weng, R. R. Gan, P. Hung, S. V. Date, E. Marcotte, L. Hood, and W. V. Ng (2004) Genome sequence of Haloarcula marismortui: A halophilic archaeon from the Dead Sea. Genome Res. 14: 2221–2234.

    Article  CAS  Google Scholar 

  15. Lee, H. S., S. G. Kang, S. S. Bae, J. K. Lim, Y. Cho, Y. J. Kim, J. H. Jeon, S. S. Cha, K. K. Kwon, H. T. Kim, C. J. Park, H. W. Lee, S. I. Kim, J. Chun, R. R. Colwell, S. J. Kim, and J. H. Lee (2009) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J. Bacteriol. 190: 7491–7499.

    Article  Google Scholar 

  16. Klenk, H. P., R. A. Clayton, J. F. Tomb, O. White, K. E. Nelson, K. A. Ketchum, R. J. Dodson, M. Gwinn, E. K. Hickey, J. D. Peterson, D. L. Richardson, A. R. Kerlavage, D. E. Graham, N. C. Kyrpides, R. D. Fleischmann, J. Quackenbush, N. H. Lee, G. G. Sutton, S. Gill, E. F. Kirkness, B. A. Dougherty, K. McKenney, M. D. Adams, B. Loftus, S. Peterson, C. I. Reich, L. K. McNeil, J. H. Badger, A. Glodek, L. Zhou, R. Overbeek, J. D. Gocayne, J. F. Weidman, L. McDonald, T. Utterback, M. D. Cotton, T. Spriggs, P. Artiach, B. P. Kaine, S. M. Sykes, P. W. Sadow, K. P. D`Andrea, C. Bowman, C. Fujii, S. A. Garland, T. M. Mason, G. J. Olsen, C. M. Fraser, H. O. Smith, C. R. Woese, and J. C. Venter (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364–370.

    Article  CAS  Google Scholar 

  17. Anderson, I. J., L. Dharmarajan, J. Rodriguez, S. Hooper, I. Porat, L. E. Ulrich, J. G. Elkins, K. Mavromatis, H. Sun, M. Land, A. Lapidus, S. Lucas, K. Barry, H. Huber, I. B. Zhulin, W. B. Whitman, B. Mukhopadhyay, C. Woese, J. Bristow, and N. Kyrpides (2009) The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota. BMC Genom. 10: 145.

    Article  Google Scholar 

  18. Kawarabayasi, Y., Y. Hino, H. Horikawa, K. Jin-no, M. Takahashi, M. Sekine, S. Baba, A. Ankai, H. Kosugi, A. Hosoyama, S. Fukui, Y. Nagai, K. Nishijima, R. Otsuka, H. Nakazawa, M. Takamiya, Y. Kato, T. Yoshizawa, T. Tanaka, Y. Kudoh, J. Yamazaki, N. Kushida, A. Oguchi, K. Aoki, S. Masuda, M. Yanagii, M. Nishimura, A. Yamagishi, T. Oshima, and H. Kikuchi (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res. 8: 123–140.

    Article  CAS  Google Scholar 

  19. Schut, G. J., S. L. Bridger, and M. W. Adams (2007) Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: Characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J. Bacteriol. 189: 4431–4441.

    Article  CAS  Google Scholar 

  20. Dodgson, K. S. and R. G. Price (1963) A note on the determination of the ester sulfate content of sulfated polysaccharides. Biochem. J. 84: 350–356.

    Google Scholar 

  21. Maeder, D. L., R. B. Weiss, D. M. Dunn, J. L. Cherry, J. M. González, J. DiRuggiero, and F. T. Robb (1999) Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Gen. 152: 1299–1305.

    CAS  Google Scholar 

  22. Aravind, L. (1999) An evolutionary classification of the metallobeta-lactamase fold proteins. In Silico. Biol. 1: 69–91.

    CAS  Google Scholar 

  23. Stein, C., V. Gieselmann, J. Kreysing, B. Schmidt, R. Pohlmann, A. Waheed, H. E. Meyer, J. S. O’Brien, and K. von Figura (1989) Cloning and expression of human arylsulfatase A. J. Biol. Chem. 264: 1252–1259.

    CAS  Google Scholar 

  24. Derbyshire, W., D. N. Hedges, P. J. Lillford, and I. T. Norton (2001) The influence of a mixed anionic system on the aggregation behavior of agarose. Food Hydro. 15: 153–163.

    Article  CAS  Google Scholar 

  25. Hagelueken, G., T. M. Adams, L. Wiehlmann, U. Widow, H. Kolmar, B. Tümmler, D. W. Heinz, and W. D. Schubert (2006) The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases. Proc. Natl. Acad. Sci. U S A. 103: 7631–7636.

    Article  CAS  Google Scholar 

  26. Okamura, H., T. Yamada, Y. Murooka, and T. Harada (1976) Purification and properties of arylsulfatase of Klebsiella aerogenes: Identity of the enzymes formed by non-repressed and depressed synthesis. Agric. Biol. Chem. 40: 2071–2076.

    Article  CAS  Google Scholar 

  27. Tazuke, Y., K. Matsuda, K. Adachi, and Y. Tsukada (1998) Purification and properties of a novel sulfatase from Pseudomonas testosteroni that hydrolyzed 3β-hydroxy-5-cholenoic acid 3-sulfate. Biosci. Biotechnol. Biochem. 62: 1739–1744.

    Article  CAS  Google Scholar 

  28. Celis, H. and I. Romero (1987) The phosphate-pyrophosphate exchange and hydrolytic reactions of the membrane-bound pyrophosphatase of Rhodospirillum rubrum: effects of pH and divalent cations. J. Bioenerg. Biomembr. 19: 255–272.

    Article  CAS  Google Scholar 

  29. Lukatela, G., N. Krauss, K. Theis, T. Selmer, V. Gieselmann, K. von Figura, and W. Saenger (1998) Crystal structure of human arylsulfatase A: The aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Biochem. 37: 3654–3664.

    Article  CAS  Google Scholar 

  30. Nok, A. J., M. S. Abubakar, A. Adaudi, and E. Balogun (2003) Arylsulfatase from Naja nigricolis venom: Characterization and possible contribution in the pathology of snake poisoning. J. Biochem. Mol. Toxicol. 17: 59–66.

    Article  CAS  Google Scholar 

  31. Russell, B., T. H. Mead, and A. Polson (1964) A method of preparing agarose. Biochim. Biophys. Acta. 86: 169–174.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jong Jeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, KT., Kim, HW., You, DJ. et al. Identification of the first archaeal arylsulfatase from Pyrococcus furiosus and its application to desulfatation of agar. Biotechnol Bioproc E 17, 1140–1146 (2012). https://doi.org/10.1007/s12257-012-0228-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0228-6

Keywords