Abstract
A gene encoding a putative arylsulfatase from the hyperthermophilic archaeon Pyrococcus furiosus was identified, cloned, and expressed as a fusion protein with a Sce VMA intein and chitin binding domain (CBD) residue. The gene (PF1345) from P. furiosus encoding a 35 kDa protein showed some similarity (17 ∼ 19%) with other arylsulfatases from the bacteria. The recombinant fusion arylsulfatase was overexpressed in E. coli and partially purified. Its molecular mass was estimated to be 90 kDa by SDS-PAGE. The optimal temperature and pH for arylsulfatase activity were found to be 45°C and 9.5, respectively. Various divalent cations (Ca2+, Mg2+, Co2+, Cu2+, Zn2+, and Mn2+) slightly activated the arylsulfatase activity in a narrow range of concentrations (below 0.5 mM), whereas Zn2+ concentrations above 2.0 mM significantly inhibited the activity. After the reaction of agar with recombinant fusion arylsulfatase for 12 h at 50°C, 75% of the sulfate in the agar was removed, and the DNA migration was greatly enhanced. Therefore, the arylsulfatase in this study could be applicable for the production of electrophoretic grade agarose by removing sulfate groups in agar.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Kertesz, M. A. (1999) Riding the sulfur cycle-metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol. Rev. 24: 135–175.
Melo, M. R. S., J. P. A. Feitosa, and A. L. P. Freitas (2002) Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohyd. Polym. 49: 491–498.
Milanesi, A. A. and J. W. C. Bind (1972) Lysosomal enzymes in aquatic species II. Distribution and particle properties of thermally acclimated muscle lysosomes of rainbow trout Salmo gairdeneri. Comp. Biochem. Physiol. 41: 473–491.
Kim, D. E., K. H. Kim, Y. J. Bae, J. H. Lee, Y. H. Jang, and S. W. Nam (2005) Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora. Protein Expr. Purif. 39: 107–115.
Lim, J. M., Y. H. Jang, H. R. Kim, J. K. Kim, and S. W. Nam (2004) Overexpression of arylsulfatase in E. coli and its application to desulfation of agar. J. Microbiol. Biotechnol. 14: 777–782.
Miech, C., T. Dierks, T. Selmer, K. von Figura, and B. Schmidt (1998) Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. J. Biol. Chem. 273: 4835–4837.
Henderson, M. J. and F. H. Milazzo (1979) Arylsulfatase in Salmonella typhimurium: Detection and influence of carbon source and tyramine on its synthesis. J. Bacteriol. 139: 80–87.
Fowler, L. R. and D. H. Rammler (1963) Sulfur metabolism of Aerobacter aerogenes. II. The purification and some properties of a sulfatase. Biochem. 208: 230–237.
Murooka, Y., M. H. Yim, and T. Harada (1980) Formation and purification of Serratia marcescens arylsulfatase. Appl. Env. Microbiol. 39: 812–817.
Beil, S., H. Kehrli, J. Peter, W. Staudenmann, A. M. Cook, T. Leisinger, and M. A. Kertesz (1995) Purification and characterization of the arylsulfatase synthesized by Pseudomonas aeruginosa PAO during growth in sulfate-free medium and cloning of the arylsulfatase gene (atsA). Eur. J. Biochem. 229: 385–394.
Barbeyron, T., P. Potin, C. Richard, O. Collin, and B. Kloareg (1995) Arylsulfatase from Alteromonas carrageenovora. Microbiol. 141: 2897–2904.
Robb, F. T., D. L. Maeder, J. R. Brown, J. DiRuggiero, M. D. Stump, R. K. Yeh, R. B. Weiss, and D. M. Dunn (2001) Genomic sequence of hyperthermophile, Pyrococcus furiosus: Implications for physiology and enzymology. Methods Enzymol. 330: 134–157.
Maeder, D. L., I. Anderson, T. S. Brettin, D. C. Bruce, P. Gilna, C. S. Han, A. Lapidus, W. W. Metcalf, E. Saunders, R. Tapia, and K. R. Sowers (2006) The Methanosarcina barkeri genome: Comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J. Bacteriol. 188: 7922–7931.
Baliga, N. S., R. Bonneau, M. T. Facciotti, M. Pan, G. Glusman, E. W. Deutsch, P. Shannon, Y. Chiu, R. S. Weng, R. R. Gan, P. Hung, S. V. Date, E. Marcotte, L. Hood, and W. V. Ng (2004) Genome sequence of Haloarcula marismortui: A halophilic archaeon from the Dead Sea. Genome Res. 14: 2221–2234.
Lee, H. S., S. G. Kang, S. S. Bae, J. K. Lim, Y. Cho, Y. J. Kim, J. H. Jeon, S. S. Cha, K. K. Kwon, H. T. Kim, C. J. Park, H. W. Lee, S. I. Kim, J. Chun, R. R. Colwell, S. J. Kim, and J. H. Lee (2009) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J. Bacteriol. 190: 7491–7499.
Klenk, H. P., R. A. Clayton, J. F. Tomb, O. White, K. E. Nelson, K. A. Ketchum, R. J. Dodson, M. Gwinn, E. K. Hickey, J. D. Peterson, D. L. Richardson, A. R. Kerlavage, D. E. Graham, N. C. Kyrpides, R. D. Fleischmann, J. Quackenbush, N. H. Lee, G. G. Sutton, S. Gill, E. F. Kirkness, B. A. Dougherty, K. McKenney, M. D. Adams, B. Loftus, S. Peterson, C. I. Reich, L. K. McNeil, J. H. Badger, A. Glodek, L. Zhou, R. Overbeek, J. D. Gocayne, J. F. Weidman, L. McDonald, T. Utterback, M. D. Cotton, T. Spriggs, P. Artiach, B. P. Kaine, S. M. Sykes, P. W. Sadow, K. P. D`Andrea, C. Bowman, C. Fujii, S. A. Garland, T. M. Mason, G. J. Olsen, C. M. Fraser, H. O. Smith, C. R. Woese, and J. C. Venter (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364–370.
Anderson, I. J., L. Dharmarajan, J. Rodriguez, S. Hooper, I. Porat, L. E. Ulrich, J. G. Elkins, K. Mavromatis, H. Sun, M. Land, A. Lapidus, S. Lucas, K. Barry, H. Huber, I. B. Zhulin, W. B. Whitman, B. Mukhopadhyay, C. Woese, J. Bristow, and N. Kyrpides (2009) The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota. BMC Genom. 10: 145.
Kawarabayasi, Y., Y. Hino, H. Horikawa, K. Jin-no, M. Takahashi, M. Sekine, S. Baba, A. Ankai, H. Kosugi, A. Hosoyama, S. Fukui, Y. Nagai, K. Nishijima, R. Otsuka, H. Nakazawa, M. Takamiya, Y. Kato, T. Yoshizawa, T. Tanaka, Y. Kudoh, J. Yamazaki, N. Kushida, A. Oguchi, K. Aoki, S. Masuda, M. Yanagii, M. Nishimura, A. Yamagishi, T. Oshima, and H. Kikuchi (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res. 8: 123–140.
Schut, G. J., S. L. Bridger, and M. W. Adams (2007) Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: Characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J. Bacteriol. 189: 4431–4441.
Dodgson, K. S. and R. G. Price (1963) A note on the determination of the ester sulfate content of sulfated polysaccharides. Biochem. J. 84: 350–356.
Maeder, D. L., R. B. Weiss, D. M. Dunn, J. L. Cherry, J. M. González, J. DiRuggiero, and F. T. Robb (1999) Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Gen. 152: 1299–1305.
Aravind, L. (1999) An evolutionary classification of the metallobeta-lactamase fold proteins. In Silico. Biol. 1: 69–91.
Stein, C., V. Gieselmann, J. Kreysing, B. Schmidt, R. Pohlmann, A. Waheed, H. E. Meyer, J. S. O’Brien, and K. von Figura (1989) Cloning and expression of human arylsulfatase A. J. Biol. Chem. 264: 1252–1259.
Derbyshire, W., D. N. Hedges, P. J. Lillford, and I. T. Norton (2001) The influence of a mixed anionic system on the aggregation behavior of agarose. Food Hydro. 15: 153–163.
Hagelueken, G., T. M. Adams, L. Wiehlmann, U. Widow, H. Kolmar, B. Tümmler, D. W. Heinz, and W. D. Schubert (2006) The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases. Proc. Natl. Acad. Sci. U S A. 103: 7631–7636.
Okamura, H., T. Yamada, Y. Murooka, and T. Harada (1976) Purification and properties of arylsulfatase of Klebsiella aerogenes: Identity of the enzymes formed by non-repressed and depressed synthesis. Agric. Biol. Chem. 40: 2071–2076.
Tazuke, Y., K. Matsuda, K. Adachi, and Y. Tsukada (1998) Purification and properties of a novel sulfatase from Pseudomonas testosteroni that hydrolyzed 3β-hydroxy-5-cholenoic acid 3-sulfate. Biosci. Biotechnol. Biochem. 62: 1739–1744.
Celis, H. and I. Romero (1987) The phosphate-pyrophosphate exchange and hydrolytic reactions of the membrane-bound pyrophosphatase of Rhodospirillum rubrum: effects of pH and divalent cations. J. Bioenerg. Biomembr. 19: 255–272.
Lukatela, G., N. Krauss, K. Theis, T. Selmer, V. Gieselmann, K. von Figura, and W. Saenger (1998) Crystal structure of human arylsulfatase A: The aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Biochem. 37: 3654–3664.
Nok, A. J., M. S. Abubakar, A. Adaudi, and E. Balogun (2003) Arylsulfatase from Naja nigricolis venom: Characterization and possible contribution in the pathology of snake poisoning. J. Biochem. Mol. Toxicol. 17: 59–66.
Russell, B., T. H. Mead, and A. Polson (1964) A method of preparing agarose. Biochim. Biophys. Acta. 86: 169–174.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jung, KT., Kim, HW., You, DJ. et al. Identification of the first archaeal arylsulfatase from Pyrococcus furiosus and its application to desulfatation of agar. Biotechnol Bioproc E 17, 1140–1146 (2012). https://doi.org/10.1007/s12257-012-0228-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12257-012-0228-6


