Skip to main content
Log in

Enhancement of stress tolerance and ethanol production in Saccharomyces cerevisiae by heterologous expression of a trehalose biosynthetic gene from Streptomyces albus

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The ability to grow and produce ethanol under stressful conditions is an important factor in industrial bioethanol production. Trehalose is found in many organisms including Saccharomyces cerevisiae, and has been known to play an important role in enhancing various types of stress tolerance. In this study, Streptomyces albus trehalose-6-phosphate synthase gene (salC) was expressed in Saccharomyces cerevisiae, and the recombinant strain with salC gene showed significantly improved stress resistances and ethanol production. The stress sensitivity and viability tests indicated that the recombinant had a greater resistance to ethanol than the control. At elevated temperatures, the results of flask cultures showed that the expression of salC played a positive role in protecting cells from heat stress. The recombinant strain was found to consume 100 g/L glucose and to produce 39 g/L ethanol at 40°C with an ethanol yield 6% higher than that of the control strain. In the fed-batch experiment in a bioreactor the recombinant strain produced 69 g/L ethanol with about 16% higher yield and about 13% higher productivity than the control strain. This demonstrated the enhancement of ethanol production capabilities of the recombinant strain under a high-ethanol stress condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mobini-Dehkordi, M., I. Nahvi, H. Zarkesh-Esfahani, K. Ghaedi, M. Tavassoli, and R. Akada (2008) Isolation of a novel mutant strain of Saccharomyces cerevisiae by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol. J. Biosci. Bioeng. 105: 403–408.

    Article  CAS  Google Scholar 

  2. Kajiwara, S., K. Suga, H. Sone, and K. Nakamura (2000) Improved ethanol tolerance of Saccharomyces cerevisiae strains by increases in fatty acid unsaturation via metabolic engineering. Biotechnol. Lett. 22: 1839–1843.

    Article  CAS  Google Scholar 

  3. Singer, M. A. and S. Lindquist (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Molecular cell. 1: 639–648.

    Article  CAS  Google Scholar 

  4. Jain, N. K. and I. Roy (2009) Effect of trehalose on protein structure. Protein Sci. 18: 24–36.

    CAS  Google Scholar 

  5. Claudio, V., B. C. Niels, B. Walter, J. E. N. Paul, B. Thomas, and W. Andres (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. European J. Biochem. 212: 315–323.

    Article  Google Scholar 

  6. Parrou, J. L., M. -A. Teste, and J. Francois (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: Genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiol. 143: 1891–1900.

    Article  CAS  Google Scholar 

  7. Li, L., Y. Ye, L. Pan, Y. Zhu, S. Zheng, and Y. Lin (2009) The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses. Biochem. Biophysic. Res. Communic. 387: 778–783.

    Article  CAS  Google Scholar 

  8. De Virgilio, C., T. Hottiger, J. Dominguez, T. Boller, and A. Wiemken (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur. J. Biochem. 219: 179–186.

    Google Scholar 

  9. Hottiger, T., P. Schmutz, and A. Wiemken (1987) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J. Bacteriol. 169: 5518–5522.

    CAS  Google Scholar 

  10. Li, H., H. -L. Wang, J. Du, G. Du, J. -C. Zhan, and W. -D. Huang (2010) Trehalose protects wine yeast against oxidation under thermal stress. World J. Microbiol. Biotechnol. 26: 969–976.

    Article  Google Scholar 

  11. Hino, A., K. Mihara, K. Nakashima, and H. Takano (1990) Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl. Environ. Microbiol. 56: 1386–1391.

    CAS  Google Scholar 

  12. Zhang, C. -Y., D. -G. Xiao, and Y. Lv (2010) Influence of trehalose accumulation on response to freeze stress in Baker’s yeast. Proceedings of the Bioinformatics and Biomedical Engineering. June 18–20. Tianjin, China.

  13. Mansure, J. J. C., A. D. Panek, L. M. Crowe, and J. H. Crowe (1994) Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochimica et Biophysica Acta (BBA) — Biomembranes. 1191: 309–316.

    Article  CAS  Google Scholar 

  14. Sharma, S. C. (1997) A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett. 152: 11–15.

    Article  CAS  Google Scholar 

  15. Ding, J., X. Huang, L. Zhang, N. Zhao, D. Yang, and K. Zhang (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl.Microbiol. Biotechnol. 85: 253–263.

    Article  CAS  Google Scholar 

  16. Arneborg, N., M. K. Moos, and M. Jakobsen (1997) Induction of acetic acid tolerance and trehalose accumulation by added and produced ethanol in Saccharomyces cerevisiae. Biotechnol. Lett. 19: 931–933.

    Article  CAS  Google Scholar 

  17. Elbein, A. D., Y. T. Pan, I. Pastuszak, and D. Carroll (2003) New insights on trehalose: a multifunctional molecule. Glycobiol. 13: 17–27.

    Article  Google Scholar 

  18. Choeng, Y. H., J. Y. Yang, G. Delcroix, Y. J. Kim, Y. K. Chang, and S. K. Hong (2007) Expression and characterization of trehalose biosynthetic modules in the adjacent locus of the salbostatin gene cluster. J. Microbiol. Biotechnol. 17: 1675–1681.

    CAS  Google Scholar 

  19. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood (2000) Practical Streptomyces Genetics. John Innes Foundation, Norwich, UK.

    Google Scholar 

  20. Sambrook, J. and D. W. Russell (2001) Molecular Cloning: A Laboratory Manual. CSHL Press, NY.

    Google Scholar 

  21. Gietz, R. D., R. H. Schiestl, A. R. Willems, and R. A. Woods (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355–360.

    Article  CAS  Google Scholar 

  22. Lohr, D., P. Venkov, and J. Zlatanova (1995) Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J. 9: 777–787.

    CAS  Google Scholar 

  23. Whang, J., J. Ahn, C. -S. Chun, Y. -J. Son, H. Lee, and E. -S. Choi (2009) Efficient, galactose-free production of Candida antarctica lipase B by GAL10 promoter in Δgal80 mutant of Saccharomyces cerevisiae. Proc. Biochem. 44: 1190–1192.

    Article  CAS  Google Scholar 

  24. Vianna, C. R., C. L. Silva, M. J. Neves, and C. A. Rosa (2008) Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaca: Trehalose metabolism, heat and ethanol resistance. Antonie Van Leeuwenhoek. 93: 205–217.

    Article  CAS  Google Scholar 

  25. Takahashi, T., H. Shimoi, and K. Ito (2001) Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Mol. Gen. Genom. 265: 1112–1119.

    Article  CAS  Google Scholar 

  26. Taylor, M. P., K. L. Eley, S. Martin, M. I. Tuffin, S. G. Burton, and D. A. Cowan (2009) Thermophilic ethanologenesis: Future prospects for second-generation bioethanol production. Trends in Biotechnol. 27: 398–405.

    Article  CAS  Google Scholar 

  27. Kiransree, N., M. Sridhar, and L. V. Rao (2000) Characterisation of thermotolerant, ethanol tolerant fermentative Saccharomyces cerevisiae for ethanol production. Bioproc. Biosys. Eng. 22: 243–246.

    CAS  Google Scholar 

  28. Balakumar, S., V. Arasaratnam, and K. Balasubramaniam (2001) Isolation and improvement of a thermotolerant Saccharomyces cerevisiae strain. World J. Microbiol. Biotechnol. 17: 739–746.

    Article  CAS  Google Scholar 

  29. Nevoigt, E. (2008) Progress in Metabolic Engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72: 379–412.

    Article  CAS  Google Scholar 

  30. Ansanay-Geleote, V., B. Blondin, S. Dequin, and J. M. Sablayrolles (2001) Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae. Biotechnol. Lett. 23: 677–681.

    Article  Google Scholar 

  31. Patel, P. (2006) Engineered microbes boost ethanol.

  32. Lin, Y. and S. Tanaka (2006) Ethanol fermentation from biomass resources: Current state and prospects. Appl. Microbiol. Biotechnol. 69: 627–642.

    Article  CAS  Google Scholar 

  33. Shi, D. -J., C. -L. Wang, and K. -M. Wang (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Industrial Microbiol. Biotechnol. 36: 139–147.

    Article  CAS  Google Scholar 

  34. van Voorst, F., J. Houghton-Larsen, L. Jønson, M. C. Kielland-Brandt, and A. Brandt (2006) Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23: 351–359.

    Article  Google Scholar 

  35. Wang, Y. J., Y. J. Hao, Z. G. Zhang, T. Chen, J. S. Zhang, and S. Y. Chen (2005) Isolation of trehalose-6-phosphate phosphatase gene from tobacco and its functional analysis in yeast cells. J. Plant Physiol. 162: 215–223.

    Article  CAS  Google Scholar 

  36. Bonini, B. M., C. Van Vaeck, C. Larsson, L. Gustafsson, P. Ma, J. Winderickx, P. Van Dijck, and J. M. Thevelein (2000) Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochem. J. 350: 261–268.

    Article  CAS  Google Scholar 

  37. László, V., H. -W. Fehlhaber, and S. Arno (1994) The Trehalase Inhibitor Salbostatin, a Novel Metabolite from Streptomyces albus ATCC21838. Angewandte Chemie International Edition in English 33: 1844–1846.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myung Hee Moon or Yong Keun Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, M.H., Ryu, J., Choeng, YH. et al. Enhancement of stress tolerance and ethanol production in Saccharomyces cerevisiae by heterologous expression of a trehalose biosynthetic gene from Streptomyces albus . Biotechnol Bioproc E 17, 986–996 (2012). https://doi.org/10.1007/s12257-012-0148-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0148-5

Keywords

Navigation