Skip to main content

Liver tissue engineering: Recent advances in the development of a bio-artificial liver

Abstract

Orthotopic liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a donor shortage. Liver tissue engineering may offer a promising strategy to solve this problem by providing transplantable, bioartificial livers. Diverse types of cells, biomaterials, and growth factor delivery systems have been tested for efficient regeneration of liver tissues that possess hepatic functions comparable to native livers. This article reviews recent advances in liver tissue engineering and describes cell sources, biomaterial scaffolds, and growth factor delivery systems that are currently being used to improve the regenerative potential of tissue-engineered livers.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Lundquist, F., N. Tygstrup, K. Winkler, K. Mellemgaard, and S. Munck-Petersen (1962) Ethanol metabolism and production of free acetate in the human liver. J. Clin. Invest. 41: 955–961.

    Article  CAS  Google Scholar 

  2. 2.

    Lobley, G. E., A. Connell, M. A. Lomax, D. S. Brown, E. Milne, A. G. Calder, and D. A. Farningham (1995) Hepatic detoxification of ammonia in the ovine liver: Possible consequences for amino acid catabolism. Br. J. Nutr. 73: 667–685.

    Article  CAS  Google Scholar 

  3. 3.

    Moshage, H. J., J. A. Janssen, J. H. Franssen, J. C. Hafkenscheid, and S. H. Yap (1987) Study of the molecular mechanism of decreased liver synthesis of albumin in inflammation. J. Clin. Invest. 79: 1635–1641.

    Article  CAS  Google Scholar 

  4. 4.

    Schwander, J. C., C. Hauri, J. Zapf, and E. R. Froesch (1983) Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: Dependence on growth hormone status. Endocrinol. 113: 297–305.

    Article  CAS  Google Scholar 

  5. 5.

    Michalopoulos, G. K. (2010) Liver regeneration after partial hepatectomy: Critical analysis of mechanistic dilemmas. Am. J. Pathol. 176: 2–13.

    Article  CAS  Google Scholar 

  6. 6.

    Kisseleva, T., E. Gigante, and D. A. Brenner (2010) Recent advances in liver stem cell therapy. Curr. Opin. Gastroenterol. 26: 395–402.

    Article  Google Scholar 

  7. 7.

    Zhang, W., L. Tucker-Kellogg, B. C. Narmada, L. Venkatraman, S. Chang, Y. Lu, N. Tan, J. K. White, R. Jia, S. S. Bhowmick, S. Shen, C. F. Dewey. Jr., and H. Yu (2010) Cell-delivery therapeutics for liver regeneration. Adv. Drug Deliv. Rev. 62: 814–826.

    Article  CAS  Google Scholar 

  8. 8.

    Mito, M., M. Kusano, and Y. Kawaura (1992) Hepatocyte transplantation in man. Transplant. Proc. 24: 3052–3053.

    CAS  Google Scholar 

  9. 9.

    Habibullah, C. M., I. H. Syed, A. Qamar, and Z. Taher-Uz (1994) Human fetal hepatocyte transplantation in patients with fulminant hepatic failure. Transplantation 58: 951–952.

    Article  CAS  Google Scholar 

  10. 10.

    Strom, S. C., R. A. Fisher, M. T. Thompson, A. J. Sanyal, P. E. Cole, J. M. Ham, and M. P. Posner (1997) Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation 63: 559–569.

    Article  CAS  Google Scholar 

  11. 11.

    Kobayashi, N., H. Noguchi, T. Watanabe, T. Matsumura, T. Totsugawa, T. Fujiwara, K. Westerman, P. Leboulch, I. J. Fox, and N. Tanaka (2000) Establishment of a tightly regulated human cell line for the development of hepatocyte transplantation. Hum. Cell 13: 7–13.

    CAS  Google Scholar 

  12. 12.

    Terry, C. and R. D. Hughes (2009) An optimised method for cryopreservation of human hepatocytes. Methods Mol. Biol. 481: 25–34.

    CAS  Google Scholar 

  13. 13.

    Terry, C., R. R. Mitry, S. C. Lehec, P. Muiesan, M. Rela, N. D. Heaton, R. D. Hughes, and A. Dhawan (2005) The effects of cryopreservation on human hepatocytes obtained from different sources of liver tissue. Cell Transplant. 14: 585–594.

    Article  Google Scholar 

  14. 14.

    Sgroi, A., V. Serre-Beinier, P. Morel, and L. Bühler (2009) What clinical alternatives to whole liver transplantation? Current status of artificial devices and hepatocyte transplantation. Transplantation 87: 457–466.

    Article  Google Scholar 

  15. 15.

    Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147.

    Article  CAS  Google Scholar 

  16. 16.

    Cai, J., Y. Zhao, Y. Liu, F. Ye, Z. Song, H. Qin, S. Meng, Y. Chen, R. Zhou, X. Song, Y. Guo, M. Ding, and H. Deng (2007) Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatol. 45: 1229–1239.

    Article  CAS  Google Scholar 

  17. 17.

    Basma, H., A. Soto-Gutiérrez, G. R. Yannam, L. Liu, R. Ito, T. Yamamoto, E. Ellis, S. D. Carson, S. Sato, Y. Chen, D Muirhead, N. Navarro-Álvarez, R. J. Wong, J. Roy-Chowdhury, J. L. Platt, D. F. Mercer, J. D. Miller, S. C. Storm, N. Kobayashi, and I. J. Fox (2009) Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterol. 136: 990–999.

    Article  CAS  Google Scholar 

  18. 18.

    Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872.

    Article  CAS  Google Scholar 

  19. 19.

    Hanna, J. H., K. Saha, and R. Jaenisch (2010) Pluripotency and cellular reprogramming: Facts, hypotheses, unresolved issues. Cell 143: 508–525.

    Article  CAS  Google Scholar 

  20. 20.

    Si-Tayeb, K., F. K. Noto, M. Nagaoka, J. Li, M. A. Battle, C. Duris, P. E. North, S. Dalton, and S. A. Duncan (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatol. 51: 297–305.

    Article  CAS  Google Scholar 

  21. 21.

    Espejel, S., G. R. Roll, K. J. McLaughlin, A. Y. Lee, J. Y. Zhang, D. J. Laird, K. Okita, S. Yamanaka, and H. Willenbring (2010) Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. J. Clin. Invest. 120: 3120–3126.

    Article  CAS  Google Scholar 

  22. 22.

    Liu, H., Y. Kim, S. Sharkis, L. Marchionni, and Y. Y. Jang (2011) In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci. Transl. Med. 3: 82ra39.

    Article  CAS  Google Scholar 

  23. 23.

    Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.

    Article  CAS  Google Scholar 

  24. 24.

    Li, T. Z., S. H. Shin, H. H. Cho, J. H. Kim, and H. Suh (2008) Growth factor-free cultured rat bone marrow derived mesenchymal stem cells towards hepatic progenitor cell differentiation. Biotechnol. Bioproc. Eng. 13: 659–665.

    Article  CAS  Google Scholar 

  25. 25.

    Stock, P., S. Brückner, S. Ebensing, M. Hempel, M. M. Dollinger, and B. Christ (2010) The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat. Protoc. 5: 617–627.

    Article  CAS  Google Scholar 

  26. 26.

    Li, T. Z., J. H. Kim, H. H. Cho, H. S. Lee, K. S. Kim, S. W. Lee, and H. Suh (2010) Therapeutic potential of bone-marrow-derived mesenchymal stem cells differentiated with growth-factor-free coculture method in liver-injured rats. Tissue Eng. Part A 16: 2649–2659.

    Article  CAS  Google Scholar 

  27. 27.

    Aurich, I., L. P. Mueller, H. Aurich, J. Luetzkendorf, K. Tisljar, M. M. Dollinger, W. Schormann, J. Walldorf, J. G. Hengstler, W. E. Fleig, and B. Christ (2007) Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut. 56: 405–415.

    Article  CAS  Google Scholar 

  28. 28.

    Aurich, H., M. Sgodda, P. Kaltwasser, M. Vetter, A. Weise, T. Liehr, M. Brulport, J. G. Hengstler, M. M. Dollinger, W. E. Fleig, and B. Christ (2009) Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut. 58: 570–581.

    Article  CAS  Google Scholar 

  29. 29.

    Pi, L., S. H. Oh, T. Shupe, and B. E. Petersen (2005) Role of connective tissue growth factor in oval cell response during liver regeneration after 2-AAF/PHx in rats. Gastroenterol. 128: 2077–2088.

    Article  CAS  Google Scholar 

  30. 30.

    Lemire, J. M., N. Shiojiri, and N. Fausto (1991) Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine. Am. J. Pathol. 139: 535–552.

    CAS  Google Scholar 

  31. 31.

    Wang, X., M. Foster, M. Al-Dhalimy, E. Lagasse, M. Finegold, and M. Grompe (2003) The origin and liver repopulating capacity of murine oval cells. Proc. Natl. Acad. Sci. USA 100Suppl 1: 11881–11888.

    Article  CAS  Google Scholar 

  32. 32.

    Yovchev, M. I., P. N. Grozdanov, H. Zhou, H. Racheria, C. Guha, and M. D. Dabeva (2008) Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatol. 47: 636–647.

    Article  CAS  Google Scholar 

  33. 33.

    Khan, A. A., M. V. Shaik, N. Parveen, A. Rajendraprasad, M. A. Aleem, M. A Habeeb, G. Srinivas, T. A. Raj, S. K. Tiwari, K. Kumaresan, J. Venkateswarlu, G. Pande, and C. M. Habibullah (2010) Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis. Cell Transplant. 19: 409–418.

    Google Scholar 

  34. 34.

    Oertel, M., A. Menthena, Y. Q. Chen, B. Teisner, C. H. Jensen, and D. A. Shafritz (2008) Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver. Gastroenterol. 134: 823–832.

    Article  CAS  Google Scholar 

  35. 35.

    Sandhu, J. S., P. M. Petkov, M. D. Dabeva, and D. A. Shafritz (2001) Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am. J. Pathol. 159: 1323–1334.

    Article  CAS  Google Scholar 

  36. 36.

    Kim, B. S. and D. J. Mooney (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 16: 224–230.

    Article  CAS  Google Scholar 

  37. 37.

    Lee, N. K., H. J. Oh, C. M. Hong, H. Suh, and S. H. Hong (2009) Comparison of the synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA) as scaffolds for artificial cartilage. Biotechnol. Bioproc. Eng. 14: 180–186.

    Article  CAS  Google Scholar 

  38. 38.

    Cho, S. W., S. S. Kim, J. W. Rhie, H. M. Cho, C. Y. Choi, and B. S. Kim (2005) Engineering of volume-stable adipose tissues. Biomat. 26: 3577–3585.

    Article  CAS  Google Scholar 

  39. 39.

    Cho, S. W., O. Jeon, J. E. Lim, S. J. Gwak, S. S. Kim, C. Y. Choi, D. I. Kim, and B. S. Kim (2006) Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold. J. Vasc. Surg. 44: 1329–1340.

    Article  Google Scholar 

  40. 40.

    Cho, S. W., K. W. Song, J. W. Rhie, M. H. Park, C. Y. Choi, and B. S. Kim (2007) Engineered adipose tissue formation enhanced by basic fibroblast growth factor and a mechanically stable environment. Cell Transplant. 16: 421–434.

    Google Scholar 

  41. 41.

    Hasirci, V., F. Berthiaume, S. P. Bondre, J. D. Gresser, D. J. Trantolo, M. Toner, and D. L. Wise (2001) Expression of liver-specific functions by rat hepatocytes seeded in treated poly(lacticco-glycolic) acid biodegradable foams. Tissue Eng. 7: 385–394.

    Article  CAS  Google Scholar 

  42. 42.

    Kim, S. S., H. Utsunomiya, J. A. Koski, B. M. Wu, M. J. Cima, J. Sohn, K. Mukai, L. G. Griffith, and J. P. Vacanti (1998) Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann. Surg. 228: 8–13.

    Article  CAS  Google Scholar 

  43. 43.

    Huang, H., S. Hanada, N. Kojima, and Y. Sakai (2006) Enhanced functional maturation of fetal porcine hepatocytes in three-dimensional poly-L-lactic acid scaffolds: A culture condition suitable for engineered liver tissues in large-scale animal studies. Cell Transplant. 15: 799–809.

    Article  Google Scholar 

  44. 44.

    Liu, T., S. Zhang, X. Chen, G. Li, and Y. Wang (2010) Hepatic differentiation of mouse embryonic stem cells in three-dimensional polymer scaffolds. Tissue Eng. Part A 16: 1115–1122.

    Article  CAS  Google Scholar 

  45. 45.

    Kazemnejad, S., A. Allameh, M. Soleimani, A. Gharehbaghian, Y. Mohammadi, N. Amirizadeh, and M. Jazayery (2009) Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J. Gastroenterol. Hepatol. 24: 278–287.

    Article  CAS  Google Scholar 

  46. 46.

    Piryaei, A., M. R. Valojerdi, M. Shahsavani, and H. Baharvand (2011) Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Rev. 7: 103–118.

    Article  CAS  Google Scholar 

  47. 47.

    Farzaneh, Z., B. Pournasr, M. Ebrahimi, N. Aghdami, and H. Baharvand (2010) Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Rev. 6: 601–610.

    Article  CAS  Google Scholar 

  48. 48.

    Hashemi, S. M., M. Soleimani, S. S. Zargarian, V. Haddadi-Asi, N. Ahmadbeigi, S. Soudi, Y. Gheisari, A. Hajarizadeh, and Y. Mohammadi (2009) In vitro differentiation of human cord bloodderived unrestricted somatic stem cells into hepatocyte-like cells on poly(epsilon-caprolactone) nanofiber scaffolds. Cells Tissues Organs 190: 135–149.

    Article  CAS  Google Scholar 

  49. 49.

    Tibbitt, M. W. and K. S. Anseth (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103: 655–663.

    Article  CAS  Google Scholar 

  50. 50.

    Lee, K. Y. and D. J. Mooney (2001) Hydrogels for tissue engineering. Chem. Rev. 101: 1869–1879.

    Article  CAS  Google Scholar 

  51. 51.

    Dvir-Ginzberg, M., I. Gamlieli-Bonshtein, R. Agbaria, and S. Cohen (2003) Liver tissue engineering within alginate scaffolds: Effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue Eng. 9: 757–766.

    Article  CAS  Google Scholar 

  52. 52.

    Dvir-Ginzberg, M., T. Elkayam, and S. Cohen (2008) Induced differentiation and maturation of newborn liver cells into functional hepatic tissue in macroporous alginate scaffolds. FASEB J. 22: 1440–1449.

    Article  CAS  Google Scholar 

  53. 53.

    Lin, N., J. Lin, L. Bo, P. Weidong, S. Chen, and R. Xu (2010) Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells in an alginate scaffold. Cell Prolif. 43: 427–434.

    Article  CAS  Google Scholar 

  54. 54.

    Seo, Y. K., J. K. Park, K. Y. Song, S. Y. Kwon, and H. S. Lee (2010) Wound healing effect of collagen-hyaluronic acid implanted in partially injured anterior cruciate ligament of dog. Biotechnol. Bioproc. Eng. 15: 552–558.

    Article  CAS  Google Scholar 

  55. 55.

    Frost, S. J., R. H. Raja, and P. H. Weigel (1990) Characterization of an intracellular hyaluronic acid binding site in isolated rat hepatocytes. Biochem. 29: 10425–10432.

    Article  CAS  Google Scholar 

  56. 56.

    Katsuda, T., T. Teratani, T. Ochiya, and Y. Sakai (2010) Transplantation of a fetal liver cell-loaded hyaluronic acid sponge onto the mesentery recovers a Wilson’s disease model rat. J. Biochem. 148: 281–288.

    Article  CAS  Google Scholar 

  57. 57.

    Zavan, B., P. Brun, V. Vindigni, A. Amadori, W. Habeler, P. Pontisso, D. Montemurro, G. Abatangelo, and R. Cortivo (2005) Extracellular matrix-enriched polymeric scaffolds as a substrate for hepatocyte cultures: In vitro and in vivo studies. Biomat. 26: 7038–7045.

    Article  CAS  Google Scholar 

  58. 58.

    Li, J., J. Pan, L. Zhang, and Y. Yu (2003) Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomat. 24: 2317–2322.

    Article  CAS  Google Scholar 

  59. 59.

    Feng, Z. Q., X. Chu, N. P. Huang, T. Wang, Y. Wang, X. Shi, Y. Ding, and Z. Z. Gu (2009) The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomat. 30: 2753–2763.

    Article  CAS  Google Scholar 

  60. 60.

    Schmidt, C. E. and J. M. Baier (2000) Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering. Biomat. 21: 2215–2231.

    Article  CAS  Google Scholar 

  61. 61.

    Tamura, N., T. Nakamura, H. Terai, A. Iwakura, S. Nomura, Y. Shimizu, and M. Komeda (2003) A new acellular vascular prosthesis as a scaffold for host tissue regeneration. Int. J. Artif. Organs 26: 783–792.

    CAS  Google Scholar 

  62. 62.

    Hawkins, J. A., N. D. Hillman, L. M. Lambert, J. Jones, G. B. Di Russo, T. Profaizer, T. C. Fuller, L. L. Minich, R. V. Williams, and R. E. Shaddy (2003) Immunogenicity of decellularized cryopreserved allografts in pediatric cardiac surgery: Comparison with standard cryopreserved allografts. J. Thorac. Cardiovasc. Surg. 126: 247–252.

    Article  Google Scholar 

  63. 63.

    Ott, H. C., T. S. Matthiesen, S. K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, and D. A. Taylor (2008) Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med. 14: 213–221.

    Article  CAS  Google Scholar 

  64. 64.

    Yoo, J. J., J. Meng, F. Oberpenning, and A. Atala (1998) Bladder augmentation using allogenic bladder submucosa seeded with cells. Urol. 51: 221–225.

    Article  CAS  Google Scholar 

  65. 65.

    Cho, S. W., S. H. Lim, I. K. Kim, Y. S. Hong, S. S. Kim, K. J. Yoo, H. Y. Park, Y. Jang, B. C. Chang, C. Y. Choi, K. C. Hwang, and B. S. Kim (2005) Small-diameter blood vessels engineered with bone marrow-derived cells. Ann. Surg. 241: 506–515.

    Article  Google Scholar 

  66. 66.

    Cho, S. W., J. E. Lim, H. S. Chu, H. J. Hyun, C. Y. Choi, K. C. Hwang, K. J. Yoo, D. I. Kim, and B. S. Kim (2006) Enhancement of in vivo endothelialization of tissue-engineered vascular grafts by granulocyte colony-stimulating factor. J. Biomed. Mater. Res. A 76: 252–263.

    Google Scholar 

  67. 67.

    Cho, S.W., I. K. Kim, J. M. Kang, K. W. Song, H. S. Kim, C. H. Park, K. J. Yoo, and B. S. Kim (2009) Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery. Tissue Eng. Part A 15: 901–912.

    Article  CAS  Google Scholar 

  68. 68.

    Zheng, X. F., S. B. Lu, W. G. Zhang, S. Y. Liu, J. X. Huang, and Q. Y. Guo (2011) Mesenchymal stem cells on a decellularized cartilage matrix for cartilage tissue engineering. Biotechnol. Bioproc. Eng. 16: 593–602.

    Article  CAS  Google Scholar 

  69. 69.

    Macchiarini, P., P. Jungebluth, T. Go, M. A. Asnaghi, L. E. Rees, T. A. Cogan, A. Dodson, J. Martorell, S. Bellini, P. P. Parnigotto, S. C. Dickinson, A. P. Hollander, S. Mantero, M. T. Conconi, and M. A. Birchall (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372: 2023–2030.

    Article  Google Scholar 

  70. 70.

    Uygun, B. E., A. Soto-Gutierrez, H. Yagi, M. L. Izamis, M. A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M. L. Yarmush, and K. Uygun (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16: 814–820.

    Article  CAS  Google Scholar 

  71. 71.

    Baptista, P. M., M. M. Siddiqui, G. Lozier, S. R. Rodriguez, A. Atala, and S. Soker (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatol. 53: 604–617.

    Article  CAS  Google Scholar 

  72. 72.

    Soto-Gutierrez, A., L. Zhang, C. Medberry, K. Fukumitsu, D. Faulk, H. Jiang, J. Reing, R. Gramignoli, J. Komori, M. Ross, M. Nagaya, E. Lagasse, D. Stolz, S. C. Storm, I. J. Fox, and S. F. Badylak (2011) A whole-organ regenerative medicine approach for liver replacement. Tissue Eng. Part C Methods 17: 677–686.

    Article  CAS  Google Scholar 

  73. 73.

    Lang, R., M. M. Stern, L. Smith, Y. Liu, S. Bharadwaj, G. Liu, P. M. Baptista, C. R. Bergman, S. Soker, J. J. Yoo, A. Atala, and Y. Zhang (2011) Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomat. 32: 7042–7052.

    Article  CAS  Google Scholar 

  74. 74.

    Wang, Y., C. B. Cui, M. Yamauchi, P. Miguez, M. Roach, R. Malavarca, M. J. Costello, V. Cardinale, E. Wauthier, C. Barbier, D. A. Gerber, D. Alvaro, and L. M. Reid (2011) Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatol. 53: 293–305.

    Article  CAS  Google Scholar 

  75. 75.

    Underhill, G. H., A. A. Chen, D. R. Albrecht, and S. N. Bhatia (2007) Assessment of hepatocellular function within PEG hydrogels. Biomat. 28: 256–270.

    Article  CAS  Google Scholar 

  76. 76.

    Itle, L. J., W. G. Koh, and M. V. Pishko (2005) Hepatocyte viability and protein expression within hydrogel microstructures. Biotechnol. Prog. 21: 926–932.

    Article  CAS  Google Scholar 

  77. 77.

    Chen, A. A., D. K. Thomas, L. L. Ong, R. E. Schwartz, T. R. Golub, and S. N. Bhatia (2011) Humanized mice with ectopic artificial liver tissues. Proc. Natl. Acad. Sci. USA 108: 11842–11847.

    Article  CAS  Google Scholar 

  78. 78.

    Wang, S., D. Nagrath, P. C. Chen, F. Berthiaume, and M. L. Yarmush (2008) Three-dimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel. Tissue Eng. Part A 14: 227–236.

    Article  CAS  Google Scholar 

  79. 79.

    Genové, E., S. Schmitmeier, A. Sala, S. Borrós, A. Bader, L. G. Griffith, and C. E. Semino (2009) Functionalized self-assembling peptide hydrogel enhance maintenance of hepatocyte activity in vitro. J. Cell. Mol. Med. 13: 3387–3397.

    Article  Google Scholar 

  80. 80.

    Kedem, A., A. Perets, I. Gamlieli-Bonshtein, M. Dvir-Ginzberg, S. Mizrahi, and S. Cohen (2005) Vascular endothelial growth factor-releasing scaffolds enhance vascularization and engraftment of hepatocytes transplanted on liver lobes. Tissue Eng. 11: 715–722.

    Article  CAS  Google Scholar 

  81. 81.

    Jeon, O., S. H. Ryu, J. H. Chung, and B. S. Kim (2005) Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J. Control. Release 105: 249–259.

    Article  CAS  Google Scholar 

  82. 82.

    Jeon, O., S. W. Kang, H. W. Lim, J. H. Chung, and B. S. Kim (2006) Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel. Biomat. 27: 1598–1607.

    Article  CAS  Google Scholar 

  83. 83.

    Cho, S. W., S. J. Gwak, S. W. Kang, S. H. Bhang, K. W. Song, Y. S. Yang, C. Y. Choi, and B. S. Kim (2006) Enhancement of angiogenic efficacy of human cord blood cell transplantation. Tissue Eng. 12: 1651–1661.

    Article  CAS  Google Scholar 

  84. 84.

    Bhang, S. H., S. W. Cho, J. M. Lim, J. M. Kang, T. J. Lee, H. S. Yang, Y. S. Song, M. H. Park, H. S. Kim, K. J. Yoo, Y. Jang, R. Langer, D. G. Anderson, and B. S. Kim (2009) Locally delivered growth factor enhances the angiogenic efficacy of adiposederived stromal cells transplanted to ischemic limbs. Stem Cells 27: 1976–1986.

    Article  CAS  Google Scholar 

  85. 85.

    Cho, S. W., I. K. Kim, S. H. Bhang, B. Joung, Y. J. Kim, K. J. Yoo, Y. S. Yang, C. Y. Choi, and B. S. Kim (2007) Combined therapy with human cord blood cell transplantation and basic fibroblast growth factor delivery for treatment of myocardial infarction. Eur. J. Heart Fail. 9: 974–985.

    Article  CAS  Google Scholar 

  86. 86.

    Hou, Y. T., H. Ljima, T. Takei, and K. Kawakami (2011) Growth factor/heparin-immobilized collagen gel system enhances viability of transplanted hepatocytes and induces angiogenesis. J. Biosci. Bioeng. 112: 265–272.

    Article  CAS  Google Scholar 

  87. 87.

    Lee, H., R. A. Cusick, F. Browne, T. Ho Kim, P. X. Ma, H. Utsunomiya, R. Langer, and J. P. Vacanti (2002) Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices. Transplantation 73: 1589–1593.

    Article  CAS  Google Scholar 

  88. 88.

    Hou, Y. T., H. Ljima, S. Matsumoto, T. Kubo, T. Takei, S. Sakai, and K. Kawakami (2010) Effect of a hepatocyte growth factor/heparin-immobilized collagen system on albumin synthesis and spheroid formation by hepatocytes. J. Biosci. Bioeng. 110: 208–216.

    Article  CAS  Google Scholar 

  89. 89.

    Kim, M., J. Y. Lee, C. N. Jones, A. Revzin, and G. Tae (2010) Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomat. 31: 3596–3603.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seung-Woo Cho.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, J.S., Cho, SW. Liver tissue engineering: Recent advances in the development of a bio-artificial liver. Biotechnol Bioproc E 17, 427–438 (2012). https://doi.org/10.1007/s12257-012-0047-9

Download citation

Keywords

  • liver tissue engineering
  • biomaterials
  • scaffolds
  • hepatocytes
  • stem cells
  • growth factor delivery