Skip to main content
Log in

Proteome analysis on lethal effect of l 2 in the sex-linked balanced lethal strains of silkworm, Bombyx mori

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The sex-linked balanced lethal (SLBL) strains of silkworm serve as an effective system for sex-control in silkworm. To gain comprehensive insight into the effect of one sex-linked balanced lethal gene l 2, comparative proteomic analysis was carried out between the survival embryos \(\left( {W^{ + l_1 } Z^{l_1 + l_2 } } \right)\) and lethal embryos \(\left( {W^{ + l_1 } Z^{ + l_1 l_2 } } \right)\) before the lethal stage. The lethal stage of l 2 was confirmed by observing the typical dead embryo morphology. The two genotype embryos before lethal stage were distinguished using polymorphic simple sequence repeats (SSR) markers closely linked to l 2 on the sex chromosome. Finally, 11 differentially expressed protein spots were successfully identified by MALDI-TOF/TOF mass spectrometry (MS). Among them, only 1 protein identified as heat shock protein 20.4 (HSP20.4) was up-regulated in the lethal embryos, while the other 10 were down-regulated. The up-regulation of HSP20.4 suggests that there may be abnormal polypeptides produced in the lethal embryos. The gene ontology (GO) annotation indicated those down-regulated proteins are involved in important biological processes including embryo development, nucleoside metabolism, tRNA splicing, translation and protein folding. The biological pathway analysis showed that those down-regulated proteins are mainly involved in spindle assemblage and morphogenesis. Based on our results, we suggest that the l 2 may be the mutant expressing abnormal polypeptides. Its expression has a negative effect on mitosis and morphogenesis processes. The death of the embryos may be caused by the accumulation of abnormal polypeptides and the handicap of cell proliferation and morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldsmith, M. R., T. Shimada, and H. Abe (2005) The genetics and genomics of the silkworm, Bombyx mori. Annu. Rev. Entomol. 50: 71–100.

    Article  CAS  Google Scholar 

  2. Xia, Q., Z. Zhou, C. Lu, D. Cheng, F. Dai, B. Li, P. Zhao, X. Zha, T. Cheng, C. Chai, G. Pan, J. Xu, C. Liu, Y. Lin, J. Qian, Y. Hou, Z. Wu, G. Li, M. Pan, C. Li, Y. Shen; X. Lan, L. Yuan, T. Li, H. Xu, G. Yang, Y. Wan, Y. Zhu, M. Yu, W. Shen, D. Wu, Z. Xiang, J. Yu, J. Wang, R. Li, J. Shi, H. Li, G. Li, J. Su, X. Wang, G. Li, Z. Zhang, Q. Wu, J. Li, Q. Zhang, N. Wei, J. Xu, H. Sun, L. Dong, D. Liu, S. Zhao, X. Zhao, Q. Meng, F. Lan, X. Huang, Y. Li, L. Fang, C. Li, D. Li, Y. Sun, Z. Zhang, Z. Yang, Y. Huang, Y. Xi, Q. Qi, D. He, H. Huang, X. Zhang, Z. Wang, W. Li, Y. Cao, Y. Yu, H. Yu, J. Li, J. Ye, H. Chen, Y. Zhou, B. Liu, J. Wang, J. Ye, H. Ji, S. Li, P. Ni, J. Zhang, Y. Zhang, H. Zheng, B. Mao, W. Wang, C. Ye, S. Li, J. Wang, G. K. Wong, and H. A. Yang (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306: 1937–1940.

    Article  Google Scholar 

  3. Hashimoto, H. (1933) The role of the W chromosome for sex determination in the silkworm, Bombyx mori. Jpn. J. Genet. 8: 245–258.

    Article  Google Scholar 

  4. Pan, Q.Z., Y. L. Chen, J. W. Chen, J. R. Lin, and Z. R. Huang (1994) Sex control of silkworm Bombyx mori by using sensitive character to incubating temperature and humidity. Chin. Sci. Bull. 39: 67–67.

    Google Scholar 

  5. Zhu, Y., P. Chen, T. Zhao, C. Lu, and Z. Xiang (2001) Research on the application of sch gene in the sex control of silkworm and the improvement of sex-limited male silkworm variety. Acta Sericologica Sinica 27: 253–256. (in Chinese with English abstract)

    CAS  Google Scholar 

  6. Chen, P. (2007) The research of relationship between sex-linked temperature-sensitivity of silkworm embryo, sex-linked chocolate sch gene and its parents. Acta Sericologica Sinica 33: 284–287. (in Chinese with English abstract).

    CAS  Google Scholar 

  7. Muller, H. J. (1918) Genetic variability, twin hybrids and constant hybrids, in a case of balanced lethal factors. Genetics. 3: 422–499.

    CAS  Google Scholar 

  8. Muller, H. J. (1927) Artificial transmutation of the gene. Science 66: 84–87.

    Article  CAS  Google Scholar 

  9. Strunnikov, V. A. (1975) Sex control in silkworms. Nature 255: 111–113.

    Article  CAS  Google Scholar 

  10. Poulson, D. F. (1937) Chromosomal deficiencies and the embryonic development of Drosophila melanogaster. Proc. Natl. Acad. Sci. 23: 133–137.

    Article  CAS  Google Scholar 

  11. Zipperlen, P., A. G. Fraser, R. S. Kamath, M. Martinez-Campos, and J. Ahringer (2001) Roles for 147 embryonic lethal genes on C.elegans chromosome I identified by RNA interference and video microscopy. EMBO. J. 20: 3984–3992.

    Article  CAS  Google Scholar 

  12. Strunnikov, V. A (1979) On the prospects of using balanced sex-linked lethals for insect pest control. Theor. Appl. Genet. 55: 17–21.

    Article  Google Scholar 

  13. He, K. R., X. R. Zhu, J. H. Huang, and J. G. Xia (2001) Study on improvement of the sex-linkaged balanced lethal silkworm strain by backcross. Acta Sericologica Sinica. 27: 185–188. (in Chinese with English abstract)

    Google Scholar 

  14. He, K. R., X. R. Zhu, J. H. Huang, and J. G. Xia (2002) Study on the transformation of sex-controlled lethal genes balanced on silkworm sex chromosome (Bombyx mori). Scientia Agricultura Sinica 35: 213–217. (in Chinese with English abstract)

    CAS  Google Scholar 

  15. He, K. R., X. R. Zhu, Z. Q. Meng, S. Chen, and X. J. Liu (2009) A cross breeding method for sex-linked balanced lethal line of silkworm. Acta Sericologica Sinica 35: 558–561. (in Chinese with English abstract)

    Google Scholar 

  16. Zhu, X. R., X. J. Liu, Z. Q. Meng, Y. Q. Wang, and K. R. He (2008) Investigation on hatchability and development of sex-linked and balanced lethal stock. Acta Sericologica Sinica. 34: 342–344. (in Chinese with English abstract)

    Google Scholar 

  17. Zhou, Z. H., H. J. Yang, M. Chen, C. F. Lou, Y. Z. Zhang, K. P. Chen, Y. Wang, M. L. Yu, F. Yu, J. Y. Li, and B. X. Zhong (2008) Comparative proteomic analysis between the domesticated silkworm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet. J. Proteome. Res. 7: 5103–5111.

    Article  CAS  Google Scholar 

  18. Hou, Y., Y. Zou, F. Wang, J. Gong, X. W. Zhong, Q. Y. Xia, and P. Zhao (2010) Comparative analysis of proteome maps of silkworm hemolymph during different developmental stages. Proteome. Sci. 8: 45–54.

    Article  Google Scholar 

  19. Chen, H. Q., Q. Yao, F. Bao, K. P. Chen, X. Y. Liu, J. Li, and L. Wang (2011) Comparative proteome analysis of silkworm in its susceptibility and resistance responses to Bombyx mori densonucleosis virus. Intervirol.

  20. Li, J. Y., X. Chen, S. H. Hosseini Moghaddam, M. Chen, H. Wei, and B. X. Zhong (2009) Shotgun proteomics approach to characterizing the embryonic proteome of the silkworm, Bombyx mori, at labrum appearance stage. Insect. Mol. Biol. 18: 649–660.

    Article  CAS  Google Scholar 

  21. Xuan, N., B. L. Niu, H. L. Wang, L. Zhuang, and Z. Q. Meng (2010) Mapping of the lethal genes in the sex-linkaged balanced lethal silkworm Bombyx mori using SSR markers. Genetics (in Chinese) 32: 1269–1274.

    CAS  Google Scholar 

  22. Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram qualities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  23. Chen, J. E., H. J. Yang, J. Y. Li, Y. W. Shen, and B. X. Zhong (2008) Larva-relevant genes expression in embryonic development stages of domesticated silkworm (Bombyx mori L.). J. Zhejiang. Univ. Sci (Agric. & Life Sci.) 34: 38–44.

    CAS  Google Scholar 

  24. Huang, L. H., C. Z. Wang, and K. Le (2009) Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa. J. Insect. Physiol. 55: 279–285.

    Article  CAS  Google Scholar 

  25. Samali, A. and S. Orrenius (1998) Heat shock proteins: Regulators of stress response and apoptosis. Cell Stress Chaperones. 3: 228–236.

    Article  CAS  Google Scholar 

  26. Jakobt, U., M. Gaestel, P. K. Engel, and J. Buchner (1993) Small heat shock proteins are molecular chaperones. The J. Biol. Chem. 268: 1517–1520.

    Google Scholar 

  27. Hossain, T., S. Teshiba, Y. Shigeoka, T. Fujisawa, Y. Inoko, D. Sakano, K. Yamamoto, Y. Banno, and Y. Aso (2010) Structural properties of silkworm small heat-shock proteins: sHSP19.9 and sHSP20.8. Biosci. Biotechnol. Biochem. 74: 1556–1563.

    Article  CAS  Google Scholar 

  28. Goff, S. A. and A. L. Goldberg (1985) Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell. 41: 587–595.

    Article  CAS  Google Scholar 

  29. Sherman, M. Y. and A. L. Goldberg (2001) Cellular defenses against unfolded review proteins: A cell biologist thinks about neurodegenerative diseases. Neuron 29: 15–32.

    Article  CAS  Google Scholar 

  30. Li, J. Y., S. H. H. Moghaddam J. E. Chen, M. Chen, and B. X. Zhong (2010) Shotgun proteomic analysis on the embryos of silkworm Bombyx mori at the end of organogenesis. Insect. Biochem. Mol. Biol. 40: 293–302.

    Article  Google Scholar 

  31. Haass, C., U. Klein, and P. M. Kloetzel (1990) Developmental expression of Drosophila melanogaster small heat-shock proteins. J. Cell. Sci. 96: 413–418.

    CAS  Google Scholar 

  32. Quraishe, S., A. Asuni, W. C. Boelens, V. O’Connor, and A. Wyttenbach (2008) Expression of the small heat shock protein family in the mouse CNS: Differential anatomical and biochemical compartmentalization. Neurosci. 153: 483–491.

    Article  CAS  Google Scholar 

  33. Li, J. Y., X. Chen, W. Fan, S. H. H. Moghaddam, M. Chen, Z. H. Zhou, H. J. Yang, J. E. Chen, and B. X. Zhong (2009) Proteomic and bioinformatic analysis on endocrine organs of domesticated silkworm, Bombyx mori L. for a comprehensive understanding of their roles and relations. J. Proteome Res. 8: 2620–2632.

    Article  CAS  Google Scholar 

  34. Berkowitz, O., R. Jost, S. Pollmann, and J. Maslea (2008) Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. The Plant Cell 20: 3430–3447.

    Article  CAS  Google Scholar 

  35. Thiele, H., M. Berger, C. Lenzner, H. Kühn, and B. J. Thiele (1998) Structure of the promoter and complete sequence of the gene coding for the rabbit translationally controlled tumor protein (TCTP) P23. Eur. J. Biochem. 257: 62–68.

    Article  CAS  Google Scholar 

  36. Chen, S. H., P. S. Wu, C. H. Chou, Y. T. Yan, H. Liu, S. Y. Weng and H. F. Yang-Yen (2007) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol. Biol. Cell. 18: 2525–2532.

    Article  CAS  Google Scholar 

  37. Hsu, Y. C., J. J. Chern, Y. Cai, M. Y. Liu, and K. W. Choi (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445: 785–788.

    Article  CAS  Google Scholar 

  38. Bommer, U. A., A. V. Borovjagin, M. A. Greagg, I. W. Jeffrey, P. Russell, K. G. Laing, M. Lee, and M. J. Clemens (2002) The mRNA of the translationally controlled tumour protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA. 8: 478–496.

    Article  CAS  Google Scholar 

  39. Gachet, Y., S. Tournier, M. Lee, A. Lazaris-Karatzas, T. Poulton, and U. A. Bommer (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J. Cell Sci. 112: 1257–1271.

    CAS  Google Scholar 

  40. Horbitiz, J. (1992) α-Crystallin can function as a molecular chaperone. Proc. Nadl. Acad. Sci. USA 89: 10449–10453.

    Article  Google Scholar 

  41. Wang, K. and A. Spector (1996) α-Crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. Eur. J. Biochem. 242: 56–66.

    Article  CAS  Google Scholar 

  42. MacRae, T. H. (2000) Structure and function of small heat shock: α-crystallin proteins established concepts and emerging ideas. Cell. Mol. Life Sci. 57: 899–913.

    Article  CAS  Google Scholar 

  43. Enayati, A. A., H. Ranson, and J. Hemingway (2005) Insect glutathione transferases and insecticide resistance. Insect. Mol. Biol. 14: 3–8.

    Article  CAS  Google Scholar 

  44. Tsuchida, K., T. Yokoyam, T. Sakudoh, C. Katagiri, S. Tsurumaru, N. Takada, H. Fujimoto, R. Ziegler, H. Iwano, K. Hamano, and T. Yaginuma (2010) Apolipophorin-III expression and low density lipophorin formation during embryonic development of the silkworm, Bombyx mori. Comp. Biochem. Physiol. Part B. 155: 363–370.

    Article  Google Scholar 

  45. Fischer, G., B. Wittmann-Liebold, K. Lang, T. Kiefhaber, and F. X. Schmid (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337: 476–478.

    Article  CAS  Google Scholar 

  46. Lu, K. P., S. D. Hanes, and T. Hunter (1996) A human peptidyl prolyl isomerase essential for regulation of mitosis. Nature 380: 544–547.

    Article  CAS  Google Scholar 

  47. Matouschek, A., S. Rospert, K. Schmid, B. Gllick, and G. Schatz (1995) Cyclophilin catalyzes protein folding in yeast mitochondria. Proc. Natl. Acad. Sci. USA. 92: 6319–6323.

    Article  CAS  Google Scholar 

  48. King, R. W., R. J. Desharies, and J. M. Peters (1996) How proteolysis drives the cell cycle. Science 274: 1652–1659.

    Article  CAS  Google Scholar 

  49. Hoff, H., H. Zhang, and C. Sell (2004) Protein degradation via the proteosome. Methods. Mol. Biol. 285: 79–92.

    CAS  Google Scholar 

  50. Uechi, T., Y. Nakajima, A. Nakao, H. T. orihara, A. Chakraborty, K. Inoue, and N. Kenmochi (2006) Ribosomal protein gene knockdown causes developmental defects in Zebrafish. PLoS ONE. 37: 1–7.

    Google Scholar 

  51. Dasso, M. (2001) Running on Ran: Nuclear transport and the mitotic spindle. Cell. 104: 321–324.

    Article  CAS  Google Scholar 

  52. Trieselmann, N. and A. Wilde (2002) Ran localizes around the microtubule spindle in vivo during mitosis in Drosophila embryos. Curr. Biol. 12: 1124–1129.

    Article  CAS  Google Scholar 

  53. Fortier, T. M., P. P. Vasa, and C. T. Woodard (2003) Orphan nuclear receptor _FTZ-F1 is required for muscle-driven morphogenetic events at the prepupal-pupal transition in Drosophila melanogaster. Dev. Biol. 257: 153–165.

    Article  CAS  Google Scholar 

  54. Li, F. B., Y. Liu, B. L. Niu, J. E. Chen, H. L. Wang, X. L. He, H. B. Weng, L. H. He, W. F. Shen, and Z. Q. Meng (2010) A preliminary study on the histomorphology of female embryos from a sex linked balanced lethal silkworm strain. Acta Sericologica Sinica 36: 0529–0533. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baolong Niu or Yongqiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Niu, B., Wang, Y. et al. Proteome analysis on lethal effect of l 2 in the sex-linked balanced lethal strains of silkworm, Bombyx mori . Biotechnol Bioproc E 17, 298–308 (2012). https://doi.org/10.1007/s12257-012-0006-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0006-5

Keywords

Navigation