Skip to main content
Log in

Comparative lipidomic analysis of Cephalosporium acremonium insights into industrial and pilot fermentations

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cephalosporium acremonium has been widely applied in industrial cephalosporin C fermentation. However, little is known about the molecular basis of fermentation behavior of this strain. In this study, comparative lipidomic analysis using LC/ESI/MSn technology was employed to investigate responses of Cephalosporium acremonium to multiple environment variations in realistic industrial cephalosporin C fermentation process and provide molecular basis for the discrepancies between industrial and pilot fermentations. Totally 77 phospholipids species were detected and 65 species were further quantified. Score plot revealed that phospholipids metabolism differed in industrial and pilot process. Loading pilot indicated that the main variables responsible for the discrimination of industrial and pilot process were phosphatidylinositols (PIs), phosphatidylserines (PSs) and phosphatic acids (PAs). Higher PIs content in industrial process indicated that cells were more vigorous in industrial process than those in pilot process. Larger increases of PSs, PAs and ratio of oleic acid to linoleic acid coincided well with the earlier and more thorough cellular morphological differentiation in industrial process. The synergetic reaction between cellular behavior and cells living environment led to titer discrepancies between industrial and pilot process. These findings provided lipidomic insights into industrial cephalosporin C production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, Y. X., B. Qiao, H. Lu, Y. Chen, and Y. J. Yuan (2011) Comparison of the secondary metabolites in Penicillium chrysogenum between pilot and industrial penicillin G fermentations. Appl. Microbiol. Biotechnol. 89: 1193–1202.

    Article  CAS  Google Scholar 

  2. Junker, B., A. Walker, M. Hesse, M. Lester, D. Vesey, J. Christensen, B. Burgess, and N. Connors (2009) Pilot-scale process development and scale up for antifungal production. Bioproc. Biosyst. Eng. 32: 443–458.

    Article  CAS  Google Scholar 

  3. Zhang, J. and A. L. Demain (1992) Regulation of ACV synthetase activity in the beta-lactam biosynthetic pathway by carbon sources and their metabolites. Arch. Microbiol. 158: 364–369.

    Article  CAS  Google Scholar 

  4. Kim, J. H., J. S. Lim, and S. W. Kim (2004) The improvement of cephalosporin C production by fed-batch culture of Cephalosporium acremonium M25 using rice oil. Biotechnol. Bioproc. Eng. 9: 459–464.

    Article  CAS  Google Scholar 

  5. Paul, S., R. Bezbaruah, R. Prakasham, M. Roy, and A. Ghosh (1997) Enhancement of growth and antibiotic titre in Cephalosporium acremonium induced by sesame oil. Folia Microbiol. (Praha). 42: 211–213.

    Article  CAS  Google Scholar 

  6. Chae, K. I. M. J., S. W. O. O. Kang, J. S. O. O. Lim, Y. S. Song, and S. W. Kim (2006) Stimulation of cephalosporin C production by Acremonium chrysogenum M35 with fatty acids. J. Microbiol. Biotechnol. 16: 1120–1124.

    Google Scholar 

  7. Kim, J. C., Y. S. Song, D. H. Lee, S. W. Kang, and S. W. Kim (2007) Fatty acids reduce the tensile strength of fungal hyphae during cephalosporin C production in Acremonium chrysogenum. Biotechnol. Lett. 29: 51–55.

    Article  CAS  Google Scholar 

  8. Martin, J. F. and A. L. Demain (2002) Unraveling the methionine-cephalosporin puzzle in Acremonium chrysogenum. Trends Biotechnol. 20: 502–507.

    Article  CAS  Google Scholar 

  9. Zhou, W., K. Holzhauer-Rieger, M. Dors, and K. Schugerl (1992) Influence of dissolved oxygen concentration on the biosynthesis of cephalosporin C. Enzy. Microb. Technol. 14: 848–854.

    Article  CAS  Google Scholar 

  10. Kim, J. C., J. S. Lim, J. M. Kim, C. Kim, and S. W. Kim (2005) Relationship between morphology and viscosity of the main culture broth of Cephalosporium acremonium M25. Korea-Australia Rheol. J. 17: 15–20.

    Google Scholar 

  11. Lee, H. H., Y. S. Song, J. Y. Lee, H. W. Jung, and S. W. Kim (2010) Rheological properties of culture broth of Acremonium chrysogenum M35 in baffled flasks with glass beads. Korea-Australia Rheol. J. 22: 51–58.

    Google Scholar 

  12. Lee, M. S., J. S. Lim, C. H. Kim, K. K. Oh, S. I. Hong, and S. W. Kim (2001) Effects of nutrients and culture conditions on morphology in the seed culture of Cephalosporium acremonium ATCC 20339. Biotechnol. Bioproc. Eng. 6: 156–160.

    Article  CAS  Google Scholar 

  13. Russell, N. J., R. I. Evans, P. F. terSteeg, J. Hellemons, A. Verheul, and T. Abee (1995) Membranes as a target for stress adaptation. Int. J. Food Microbiol. 28: 255–261.

    Article  CAS  Google Scholar 

  14. Beltran, G., M. Novo, J. M. Guillamon, A. Mas, and N. Rozes (2008) Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. Int. J. Food Microbiol. 121: 169–177.

    Article  CAS  Google Scholar 

  15. Bhagyalakshmi, A., F. Berthiaume, K. Reich, and J. Frangos (1992) Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J. Vasc. Res. 29: 443–449.

    Article  CAS  Google Scholar 

  16. Skorko-Glonek, J., B. Lipinska, K. Krzewski, G. Zolese, E. Bertoli, and F. Tanfani (1997) HtrA heat shock protease interacts with phospholipid membranes and undergoes conformational changes. J. Biol. Chem. 272: 8974–8982.

    CAS  Google Scholar 

  17. Verkleij, A., B. De Kruyff, P. Ververgaert, J. Tocanne, and L. Van Deenen (1974) The influence of pH, Ca2+ and protein on the thermotropic behaviour of the negatively charged phospholipid, phosphatidylglycerol. Biochim. Biophys. Acta Biomembr. 339: 432–437.

    Article  CAS  Google Scholar 

  18. Hosono, K. (1992) Effect of salt stress on lipid composition and membrane fluidity of the salttolerant yeast Zygosaccharomyces rouxii. J. Gen. Microbiol. 138: 91–96.

    CAS  Google Scholar 

  19. Sohn, Y. S., K. C. Lee, Y. H. Koh, and G. H. Gil (1994) Changes in cellular fatty acid composition of Cephalosporium acremonium during cephalosporin C production. Appl. Environ. Microbiol. 60: 947–952.

    CAS  Google Scholar 

  20. Papacharilaou, E. and M. A. Pisano (1984) Changes in the lipid composition of Paecilomyces persicinus P-10 M1 during growth and cephalosporin C production. Appl. Environ. Microbiol. 48: 1084–1087.

    CAS  Google Scholar 

  21. Xia, J. M. and Y. J. Yuan (2009) Comparative lipidomics of four strains of Saccharomyces cerevisiae reveals different responses to furfural, phenol, and acetic acid. J. Agric. Food Chem. 57: 99–108.

    Article  CAS  Google Scholar 

  22. Yang, S., S. H. Lu, and Y. J. Yuan (2008) Lipidomic analysis reveals differential defense responses of Taxus cuspidata cells to two elicitors, methyl jasmonate and cerium (Ce4+). Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1781: 123–134.

    CAS  Google Scholar 

  23. Sandor, E., A. Szentirmai, G. C. Paul, C. R. Thomas, I. Pocsi, and L. Karaffa (2001) Analysis of the relationship between growth, cephalosporin C production, and fragmentation in Acremonium chrysogenum. Can. J. Microbiol. 47: 801–806.

    CAS  Google Scholar 

  24. Holub, B. J. (1986) Metabolism and function of myo-inositol and inositol glycerophospholipids. Annu. Rev. Nutr. 6: 563–597.

    Article  CAS  Google Scholar 

  25. Ishii, I., N. Fukushima, X. Q. Ye, and J. Chun (2004) Lysophospholipid receptors: Signaling and biology. Annu. Rev. Biochem. 73: 321–354.

    Article  CAS  Google Scholar 

  26. Hoffmann, P. R., A. M. DeCathelineau, C. A. Ogden, Y. Leverrier, D. L. Bratton, D. L. Daleke, A. J. Ridley, V. A. Fadok, and P. M. Henson (2001) Phosphatidylserine (PS) induces PS receptormediated macropinocytosis and promotes clearance of apoptotic cells. J. Cell Biol. 155: 649–660.

    Article  CAS  Google Scholar 

  27. Mykytczuk, N., J. Trevors, L. Leduc, and G. Ferroni (2007) Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog. Biophys. Mol. Biol. 95: 60–82.

    Article  CAS  Google Scholar 

  28. Sandermann Jr, H. (1978) Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta 515: 209–237.

    CAS  Google Scholar 

  29. Los, D. A. and N. Murata (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta Biomembr. 1666: 142–157.

    Article  CAS  Google Scholar 

  30. Boumann, H. A., M. J. A. Damen, C. Versluis, A. J. R. Heck, B. de Kruijff, and A. de Kroon (2003) The two biosynthetic routes leading to phosphatidylcholine in yeast produce different sets of molecular species. Evidence for lipid remodeling. Biochem. 42: 3054–3059.

    CAS  Google Scholar 

  31. Bankaitis, V. A. and A. J. Morris (2003) Lipids and the exocytotic machinery of eukaryotic cells. Curr. Opin. Cell Biol. 15: 389–395.

    Article  CAS  Google Scholar 

  32. Gruner, S. M. (1985) Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc. Natl. Acad. Sci. USA. 82: 3665–3669.

    Article  CAS  Google Scholar 

  33. Li, Z., L. B. Agellon, T. M. Allen, M. Umeda, L. Jewell, A. Mason, and D. E. Vance (2006) The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell. metab. 3: 321–331.

    Article  CAS  Google Scholar 

  34. Clarke, S. D. (2001) Polyunsaturated fatty acid regulation of gene transcription: A molecular mechanism to improve the metabolic syndrome. J. Nutr. 131: 1129–1132.

    CAS  Google Scholar 

  35. Lim, J. S., J. H. Kim, C. Kim, and S. W. Kim (2002) Morphological and rheological properties of culture broth of Cephalosporium acremonium M25. Korea-Australia Rheol. J. 14: 11–16.

    Google Scholar 

  36. Pazouki, M. and T. Panda (2000) Understanding the morphology of fungi. Bioproc. Biosyst. Eng. 22: 127–143.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jin Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, RJ., Qiao, B., Li, BZ. et al. Comparative lipidomic analysis of Cephalosporium acremonium insights into industrial and pilot fermentations. Biotechnol Bioproc E 17, 259–269 (2012). https://doi.org/10.1007/s12257-011-0494-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0494-8

Keywords

Navigation