Skip to main content
Log in

The effect of physico-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A fast and cost effective immobilization of electron carriers, methylene blue (MB) and neutral red (NR) by pH shift was proposed to improve bioanodic performance. The adsorption of mediators onto the carbon cloth anode was verified using cyclic voltammogram (CV) and the effect of the immobilized mediators on acclimation, power density, and acetate removal of MFCs was investigated. A peak power density of P max(MB) = 11.3 W/m3 was achieved over days 110 ∼ 120, as compared to P max(Control) = 5.4 W/m3 and P max(NR) = 3.1 W/m3 for the treated anode after 15 sequential fed-batch operations. The VFA removal rates however were similar for all MFC systems, ranging from 82 to 87%. It could be suggested that the increase in power density for the MB treated electrode resulted from an enhanced electron transport from exo-electrogenic bacteria. MB may also have a selective effect on the bacterial community during the start-up stage, increasing the voltage production and acetate removal from day 1 to 16. However, MFC with NR treated anode produced an initial voltage under 100 mV, with lower coulombic efficiency (CE). NR exhibited less favourable mediator molecule binding to the electrode surface, when subject to pH driven physico-chemical immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oh, S. T., J. R. Kim, G. C. Premier, T. H. Lee, C. Kim, and W. T. Sloan (2010) Sustainable wastewater treatment: How might microbial fuel cells contribute. Biotechnol. Adv. 28: 871–881.

    Article  CAS  Google Scholar 

  2. Rabaey, K., K. Van de Sompel, L. Maignien, N. Boon, P. Aelterman, P. Clauwaert, L. De Schamphelaire, H. T. Pham, J. Vermeulen, M. Verhaege, P. Lens, and W. Verstraete (2006) Microbial fuel cells for sulfide removal. Environ. Sci. Technol. 40: 5218–5224.

    Article  CAS  Google Scholar 

  3. Logan, B. E. B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Alterman, W. Verstraetae, and K. Rabaey (2006) Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40: 5181–5192.

    Article  CAS  Google Scholar 

  4. Rabaey, K. and W. Verstraete (2005) Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 23: 291–298.

    Article  CAS  Google Scholar 

  5. Kim, J. R., G. C. Premiera, F. R. Hawkes, R. M. Dinsdale, and A. J. Guwy (2009) Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. J. Power Sources 187: 393–399.

    Article  CAS  Google Scholar 

  6. Kim, J. R., J. Rodriguez, F. R. Hawkes, R. M. Dinsdale, A. J. Guwy, and G. C. Premier (2011) Increasing power recovery and organic removal efficiency using extended longitudinal tubular microbial fuel cell (MFC) reactors. Energ. Environ. Sci. 4: 459–465.

    Article  CAS  Google Scholar 

  7. Kim, J. R., G. C. Premier, F. R. Hawkes, J. Rodríguez, R. M. Dinsdale, and A. J. Guwy (2010) Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate. Bioresour. Technol. 101: 1190–1198.

    Article  CAS  Google Scholar 

  8. Zeng, Y. Z., Y. F. Choo, B. H. Kim, and P. Wu (2010) Modelling and simulation of two-chamber microbial fuel cell. J. Power Sources. 195: 79–89.

    Article  CAS  Google Scholar 

  9. Logan, B. E. (2008) Microbial Fuel Cells. pp. 132–133. John Wiley and Sons, NJ.

    Google Scholar 

  10. Logan, B. E., B. Hamelers, R. A. Rozendal, U. Schrorder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey (2006) Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40: 5181–5192.

    Article  CAS  Google Scholar 

  11. Park, A. H., S. K. Kim, I. H. Shin, and Y. J. Jeong (2000) Electricity Production in biofuel cell using modified graphite felt electrode with neutral red. Biotechnol. Lett. 22: 1301–1304.

    Article  CAS  Google Scholar 

  12. Park, D. H. and J. G. Zeikus (1999) Utilization of electrically reduced neutral red by Actinobacillus succinogens: Physiological function of neutral red in membrane driven fumrate reduction and energy concervation. J. Bacteriol. 181: 2403–2410.

    CAS  Google Scholar 

  13. Ferreira-Leitao, V. S., M. E. A. Carvalho, and E. P. S. Bon (2007) Lignin peroxidase efficiency for methylene blue decolouration: Comparison to reported methods. Dyes Pigments 74: 230–236.

    Article  CAS  Google Scholar 

  14. Mohan, Y., S. M. M. Kumar, and D. Das (2008) Electricity generation using microbial fuel cells. Int. J. Hydrogen Energ. 33: 423–426.

    Article  CAS  Google Scholar 

  15. Wang, C. -T., W. -J. Chen, and R. -Y. Huang (2010) Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coli. Int. J. Hydrogen Energ. 36: 1–7.

    Google Scholar 

  16. Potter, M. C. (1912) Electrical effects accompanying the decomposition of organic compounds. Royal Society 84: 260–276.

    Article  CAS  Google Scholar 

  17. Choi, Y., N. Kim, S. Kim, and S. Jung (2003) Dynamic behaviors of redox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation. B. Kor. Chem. Soc. 24: 437–440.

    Article  CAS  Google Scholar 

  18. Lithgow, A. M., L. Romero, I. C. Sanchez, F. A. Souto, and C. A. Vega (1986) Interception of the electron-transport chain in bacteria with hydrophilic redox mediators. 1. Selective improvement of the performance of biofuel cells with 2,6-disulfonated thionine as mediator. J. Chem. Res. 5: 178–179.

    Google Scholar 

  19. Samrot, A. V., P. Senthilkumar, K. Pavankumar, G. C. Akilandeswari, N. Rajalakshmi, and K. S. Dhathathreyan (2010) Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell. Int. J. Hydrogen Energ. 35: 7723–7729.

    Article  CAS  Google Scholar 

  20. Gunawardena, A., S. Fernando, and F. To (2008) Performance of a Yeast-mediated biological fuel cell. Int. J. Mol. Sci. 9: 1893–1907.

    Article  CAS  Google Scholar 

  21. Rabaey, K., N. Boon, M. Hofte, and W. Verstraete (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39: 3401–3408.

    Article  CAS  Google Scholar 

  22. Das, D. and T. N. Veziroðlu (2001) Hydrogen production by biological process: A survey of literature. Int. J. Hydrogen Energ. 26: 13–28.

    Article  CAS  Google Scholar 

  23. Michaelis, L. and H. Eagle (1930) Some redox mediators. The J. Biol. Chem. 87: 713–727.

    CAS  Google Scholar 

  24. Akoachere, M., K. Buchholz, E. Fischer, J. Burhenne, W. E. Haefeli, R. H. Schirmer, and K. Becker (2005) In vitro assessment of methylene blue on chloroquine-sensitive and -resistant Plasmodium falciparum strains reveals synergistic action with artemisinins. Antimicrob. Agents Ch. 49: 4592–4597.

    Article  CAS  Google Scholar 

  25. Auerbach, S. S., D. W. Bristol, J. C. Peckham, G. S. Travlos, C. D. Hebert, and R. S. Chhabra (2010) Toxicity and carcinogenicity studies of methylene blue trihydrate in F344N rats and B6C3F1 mice. Food and Chemical Toxicol. 48: 169–177.

    Article  CAS  Google Scholar 

  26. Hameed, B. H. and A. A. Ahmad (2009) Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 164: 870–875.

    Article  CAS  Google Scholar 

  27. Hameed, B. H., A. L. Ahmad, and K. N. A. Latiff (2007) Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigments. 75: 143–149.

    Article  CAS  Google Scholar 

  28. Hameed, B. H., A. T. M. Din, and A. L. Ahmad (2007) Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 141: 819–825.

    Article  CAS  Google Scholar 

  29. Hameed, B. H. and N. Nasuha (2011) Adsorption of methylene blue from aqueous solution onto NaOH-modified rejected tea. Chem. Eng. J. 166: 783–786.

    Article  Google Scholar 

  30. Daniel, D. K., B. Das Mankidy, K. Ambarish, and R. Manogari (2009) Construction and operation of a microbial fuel cell for electricity generation from wastewater. Int. J. Hydrogen Energ. 34: 7555–7560.

    Article  CAS  Google Scholar 

  31. Wang, C. T., W. J. Chen, and R. Y. Huang (2010) Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coil. Int. J. Hydrogen Energ. 35: 7217–7223.

    Article  CAS  Google Scholar 

  32. McKinlay, J. B. and J. G. Zeikus (2004) Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli. Appl. Environ. Microb. 70: 3467–3474.

    Article  CAS  Google Scholar 

  33. Lin, J. X. and L. Wang (2009) Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Frontiers of Env. Sci. Eng. China 3: 320–324.

    Article  CAS  Google Scholar 

  34. Senthilkumaar, S., P. R. Varadarajan, K. Porkodi, and C. Subbhuraam (2005) Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies. J. Colloid. Interf. Sci. 284: 78–82.

    Article  CAS  Google Scholar 

  35. Kim, J. R., S. Cheng, S. E. Oh, and B. E. Logan (2007) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 41: 1004–1009.

    Article  CAS  Google Scholar 

  36. Kim, J. R., G. C. Premier, F. R. Hawkes, J. Rodríguez, R. M. Dinsdale, and A. J. Guwy (2009) Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate. Bioresour. Technol. 101: 1190–1198.

    Article  Google Scholar 

  37. Richter, H., K. P. Nevin, H. F. Jia, D. A. Lowy, D. R. Lovley, and L. M. Tender (2009) Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energ. Environ. Sci. 2: 506–516.

    Article  CAS  Google Scholar 

  38. Cruwys, J. A., R. M. Dinsdalea, F. R. Hawkes, and D. L. Hawkes (2002) Development of a static headspace gas chromatographic procedure for the routine analysis of volatile fatty acids in wastewaters. J. Chromatography 945: 195–209.

    Article  CAS  Google Scholar 

  39. Albrecht, T., Z. P. Chen, E. Knutson, S. Wang, and L. A. Martinez (2007) Stabilization of p53 in human cytomegalovirus-initiated cells is associated with sequestration of HDM2 and decreased p53 ubiquitination. J. Biol. Chem. 282: 29284–29295.

    Article  Google Scholar 

  40. Rezvani, S., Y. Huang, D. Mcllveen-Wright, N. Hewitt, and Y. Wang (2007) Comparative assessment of sub-critical versus advanced super-critical oxyfuel fired PF boilers with CO(2) sequestration facilities. Fuel 86: 2134–2143.

    Article  CAS  Google Scholar 

  41. Bard, A. J. and L. R. Faulkner (2001) Electrochemical Methods. pp. 598–600. John Wiley & sons, Austin.

    Google Scholar 

  42. Logan, B. E., J. R. Kim, S. H. Jung, and J. M. Regan (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour. Technol. 98: 2568–2577.

    Article  Google Scholar 

  43. Cousins, C. S. G. (2003) Elasticity of carbon allotropes. IV. Rhombohedral graphite: Elasticity, zone-center optic modes, and phase transformation using transferred Keating parameters. Physical Rev. B. 67: 024110.024111–024110.024111.

    Google Scholar 

  44. Cousins, C. S. G. and M. I. Heggie (2003) Elasticity of carbon allotropes. III. Hexagonal graphite: Review of data, previous calculations, and a fit to a modified anharmonic Keating model. Physical Rev. B. 67: 024109..024101-024109.024112.

    Article  Google Scholar 

  45. Endo, K., S. Koizumi, T. Otsuka, T. Ida, T. Morohashi, J. Onoe, A. Nakao, E. Z. Kurmaev, A. Moewes, and D. P. Chong (2003) Analysis of electron spectra of carbon allotropes (diamond, graphite, fullerene) by density functional theory calculations using the model molecules. J. Phys. Chem. A. 107: 9403–9408.

    Article  CAS  Google Scholar 

  46. Hirsch, A. (1993) The Chemistry of the Fullerenes — An overview. Angewandte Chemie-International Edition in English. 32: 1138–1141.

    Article  Google Scholar 

  47. Ye, J. N. and R. P. Baldwin (1988) Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene-blue. Anal. Chem. 60: 2263–2268.

    Article  CAS  Google Scholar 

  48. Housecroft, C. and A. G. Sharpe (2007) Inorganic Chemistry. Prentice Hall, NY.

    Google Scholar 

  49. Wagner, R. C., D. I. Call, and B. E. Logan (2010) Optimal set anode potentials vary in bioelectrochemical systems. Environ. Sci. Technol. 44: 6036–6041.

    Article  CAS  Google Scholar 

  50. Mccalla, T. M. (1939) Cation adsorption by bacteria. J. Bacteriol. 40: 23–32.

    Google Scholar 

  51. Michie, I., J. R. Kim, R. Dinsdale, A. Guwy, and G. Premier (2011) Operational temperature regulates anodic biofilm growth and the development of electrogenic activity. Appl. Microbiol. Biot. 92: 419–430.

    Article  CAS  Google Scholar 

  52. Michie, I. S., J. R. Kim, R. M. Dinsdale, A. J. Guwyb, and G. C. Premier (2011) The influence of psychrophilic and mesophilic start-up temperature on microbial fuel cell system performance. Energ. Environ. Sci. 4: 1011–1019.

    Article  CAS  Google Scholar 

  53. Sumner, J. J., C. J. Sund, S. McMasters, S. R. Crittenden, and L. E. Harrell (2007) Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl. Microbiol. Biot. 76: 561–568.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung Rae Kim or Richard M. Dinsdale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, A.L., Kim, J.R., Dinsdale, R.M. et al. The effect of physico-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell. Biotechnol Bioproc E 17, 361–370 (2012). https://doi.org/10.1007/s12257-011-0493-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0493-9

Keywords

Navigation