Skip to main content
Log in

Efficient 1–5 regioselective acylation of primary hydroxyl groups of fermentative derived xylitol catalyzed by an immobilized Pseudomonas aeruginosa lipase

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The experiment described in this paper synthesizes xylitol acylated products from fermentative derived xylitol and acid anhydrides of various chain lengths in the presence of Tetrahydrofuran (THF) and acetonitrile using immobilized Pseudomonas aeruginosa (PL) lipase as a biocatalyst (97% residual activity up to five cycles) at 37°C, 200 rpm. This study examines a number of different acid anhydrides for their highly selective and efficient lipase-catalyzed acylation of primary hydroxyl groups in xylitol. Of those studied, the best results are obtained with butanoic anhydride, 80.12% after 4 h in acetonitrile followed by vinyl acetate, which results in 77.79% conversion after 8 h of incubation in THF as analyzed through high performance liquid chromatography (HPLC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rufino, A. R., F. C. Biaggio, J. C. Santos, and H. F. de Castro (2010) Screening of lipases for the synthesis of xylitol monoesters by chemoenzymatic esterification and the potential of microwave and ultrasound irradiations to enhance the reaction rate. Int. J. Biol. Macromol. 47: 5–9.

    Article  CAS  Google Scholar 

  2. Faber, K. (2003) Biotransformations in organic synthesis 6th ed., Springer Verlag, N Y.

    Google Scholar 

  3. Stinson, S. C. (1998) Counting on chiral drugs. Chem. Eng. News. 76: 83–96.

    Article  Google Scholar 

  4. Park, H. G., J. H. Do, and H. N. Chang (2003) Regioselective enzymatic acylation of multi-hydroxyl compounds in organic synthesis. Biotechnol. Bioproc. Eng. 8: 1–8.

    Article  CAS  Google Scholar 

  5. Therisod, M. and A. M. Klibanov (1986) Facile enzymatic preparation of monoacylated sugars in pyridine. J. Am. Chem. Soc. 108: 5638–5640.

    Article  CAS  Google Scholar 

  6. Pedersen, N. R., P. J. Halling, L. H. Pedersen, R. Wimmer, R. Matthiesen, and O. R. Veltman (2002) Efficient transesterification of sucrose catalysed by the metalloprotease thermolysin in dimethylsulfoxide. FEBS Lett. 519: 181–184.

    Article  CAS  Google Scholar 

  7. Cramer, J. F., M. S. Dueholm, S. B. Nielsen, D. S. Pedersen, R. Wimmer, and L. H. Pedersen (2007) Controlling the degree of esterification in lipase catalysed synthesis of xylitol fatty acid esters. Enz. Microbial. Technol. 41: 346–352.

    Article  CAS  Google Scholar 

  8. Saxena, R. K., P. K. Ghosh, R. Gupta, W. S. Davidson, S. Bradoo, and R. Gulati (1999) Microbial lipases, potential biocatalysts for future industry. Curr. Sci. 77: 101–115.

    CAS  Google Scholar 

  9. Hasan, F., A. A. Shah, and A. Hameed (2006) Industrial applications of microbial lipases. Enz. Microbial. Technol. 39: 235–251.

    Article  CAS  Google Scholar 

  10. Chopineau, J., F. D. Mc Cafferty, M. Therisod, and A. M. Klibanov (1988) Production of biosurfactants from sugar alcohols and vegetable oils catalysed by lipases in a non aqueous medium. Biotechnol. Bioeng. 31: 208–214.

    Article  CAS  Google Scholar 

  11. Haveren, J., E. A. van Oostveen, F. Miccichè, and J. G. J. Weijnen (2006) How biobased products contribute to the establishment of sustainable, phthalate free, plasticizers and coatings, feedstocks for the future. ACS Symposium Series 921: 99–115.

    Article  Google Scholar 

  12. Tiwari, P. and A. K. Misra (2006) Acylation of carbohydrates over Al2O3: preparation of partially and fully acylated carbohydrate derivatives and acetylated glycosyl chlorides. Carbohydrate Res. 341: 339–350.

    Article  CAS  Google Scholar 

  13. Cao, L., U. T. Bornscheuer, and R. D. Schmid (1999) Lipase catalyzed solid phase synthesis of sugar esters. Influence of immobilization on productivity and stability of the enzyme. J. Mol. Catal. B-Enzymatic 6: 279–285.

    CAS  Google Scholar 

  14. Ritchie, G. E., B. E. Moffatt, R. B. Sim, B. P. Morgan, R. A. Dwek, and P. M. Rudd (2002) Glycosylation and the complement system. Chem. Rev. 102: 305–319.

    Article  CAS  Google Scholar 

  15. Toshima, K. and K. Tatsuta (1993) Recent progress in O-glycosylation methods and its applications to natural products synthesis. Chem. Rev. 93: 1503–1531.

    Article  CAS  Google Scholar 

  16. Lee, J -C., C -A. Tat, and S -C. Huang (2002) Sc OT(f)3-catalysed acetolysis of 1,6 anhydro-hexopyranoses and solvent free peracetylation of hexoses. Tetrahedron Lett. 43: 851–865.

    Article  CAS  Google Scholar 

  17. Murugesan, S., N. Karst, T. Islam, J. M. Wiencek, and R. J. Linhardt (2003) Dialkyl imidazolium benzoates-room temperature ionic liquids useful in the paracetylation and per-benzoylation of simple and sulfated saccharides. Synlett. 9: 1283–1286.

    Google Scholar 

  18. Meghwanshi, G. K., L. Agarwal, K. Dutt, and R. K. Saxena (2006) Characterization of 1, 3-regiospecific lipases from new Pseudomonas and Bacillus isolates. J. Mol. Catal. B Enzym. 40: 127–131.

    Article  CAS  Google Scholar 

  19. Winkler, U. K. and M. Stuckman (1979) Polysaccharide enhancement of exolipase formation by S. marcescens. J. Bacteriol. 138: 663–670.

    CAS  Google Scholar 

  20. Misra, S., P. Gupta, S. Raghuwanshi, K. Dutt, and R. K. Saxena (2011) Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep. Purif. Technol. 78: 266–273.

    Article  CAS  Google Scholar 

  21. Xie, T., A. Wang, L. Huang, H. Li, Z. Chen, Q. Wang, and P. Yin (2009) Recent advance in the support and technology used in enzyme immobilization. Afr. J. Biotechnol. 8: 4724–4733.

    CAS  Google Scholar 

  22. Parmar, A., H. Kumar, S. Marwaha, and J. F., Kennedy (2000) Advances in enzymatic transformation of penicillins to 6-aminopenicillanic acid (6-APA). Biotechnol. Adv. 18: 289–301.

    Article  CAS  Google Scholar 

  23. Gomez, L., H. L. Ramirez, A. Neira-Carrillo, and R. Villalonga (2006) Polyelectrolyte complex formation mediated immobilization of chitosan-invertase neoglycoconjugate on pectin-coated chitin. Bioproc. Biosyst. Eng. 28: 387–395.

    Article  CAS  Google Scholar 

  24. Plou, F. J., M. A. Cruces, M. Ferrer, G. Fuentes, E. Pastor, M. Bernabé, Christensen M. F. Comelles, J. L. Parra, and A. Ballesteros (2002) Enzymatic acylation of di-and trisaccharides with fatty acids: Choosing the appropriate enzyme, support and solvent. J. Biotechnol. 96: 55–56.

    Article  CAS  Google Scholar 

  25. Bhattacharya, A., A. K. Prasad, J. Maity, Himanshu, Poonam, C. E. Olsen, R. A. Gross, and V. S. Parmar (2003) Highly efficient and selective biocatalytic acylation studies on triazolylsugars. Tetrahedron. 59: 10269–10277.

    Article  CAS  Google Scholar 

  26. Degn, P. and W. Zimmermann (2001) Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antartica. Biotechnol. Bioeng. 74: 483–491.

    Article  CAS  Google Scholar 

  27. Zaks, A. and A. M. Klibanov (1988) Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem. 263: 3194–3201.

    CAS  Google Scholar 

  28. Kanerva, L., T. Kosonen, M. E. Vänttinen, T. T. Huuhtanen, and M. Dahlqvist (1992) Studies on the chemo and enantio-selectivity of the enzymatic monoacylations of amino alcohols. Acta. Chem. Scand. 46: 1101–1105.

    Article  CAS  Google Scholar 

  29. Shirae, Y., T. Mino, T. Hasegawa, M. Sakamoto, and T. Fujita (2005) Transesterification of various alcohols with vinyl acetate under mild conditions catalysed by diethylzinc using n-substituted diethanolamine as a ligand. Tetrahedron Lett. 46: 5877–5879.

    Article  CAS  Google Scholar 

  30. Alder, U., D. Breitgoff, P. Klein, K. Laumen, and P. Schneirder (1989) Enzymatic ester hydrolysis and synthesis two approaches to cycloalkane derivatives of high enantiomeric purity. Tetrahedron Lett. 30: 1793–1796.

    Article  Google Scholar 

  31. Brzozowski, A. M., U. Derewenda, Z. S. Derewenda, G. G. Dodson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. Huge-Jensen, S. A. Patkar, and L. Thim (1991) Model for interfacial activation in lipases from the structure of the fungal lipase-inhibitor complex. Nature 351: 491–493.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, S., Raghuwanshi, S., Gupta, P. et al. Efficient 1–5 regioselective acylation of primary hydroxyl groups of fermentative derived xylitol catalyzed by an immobilized Pseudomonas aeruginosa lipase. Biotechnol Bioproc E 17, 398–406 (2012). https://doi.org/10.1007/s12257-011-0491-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0491-y

Keywords

Navigation