Skip to main content
Log in

Regioselective enzymatic procedure for preparing 3′-O-stearoyl-6-azauridine by using Burkholderia cepacia lipase

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Previous studies on the lipase-mediated acylation of 6-azauridine with vinyl stearate in organic solvents revealed that while preparing a potential prodrug, 3′-O-stearoyl-6-azauridine, a lipase from Burkholderia cepacia showed high regioselectivity toward the second hydroxyl group. The most suitable reaction solvent, molar ratio of vinyl stearate to 6-azauridine, and reaction temperature were anhydrous acetone, 15:1, and 45°C, respectively. Under these conditions, the initial reaction rate, 3′-regioselectivity, and maximum substrate conversion were as high as 10.4 mM/h, 86.0, and 99.0%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pejanović, V., V. Piperski, D. Ugljeşœić-Kilibarda, J. Tasić, M. Dačević, L. Medić-Mijačević, E. Gunić, M. Popsavin, and V. Popsavin (2006) Synthesis and biological activity of some new 5′-O-acyl tiazofurin derivatives. Eur. J. Med. Chem. 41: 503–512.

    Article  Google Scholar 

  2. Ferrero, M. and V. Gotor (2000) Biocatalytic selective modifications of conventional nucleosides, carbocyclic nucleosides, and C-nucleosides. Chem. Rev. 100: 4319–4348.

    Article  CAS  Google Scholar 

  3. Li, X. F., M. H. Zong, and G. L. Zhao (2010) Highly regioselective enzymatic synthesis of 5′-O-stearate of 1-β-D-arabinofuranosylcytosine in binary organic solvent mixtures. Appl. Microbiol. Biotechnol. 88: 1–7.

    Article  Google Scholar 

  4. Wang, H., M. H. Zong, H. Wu, and W. Y. Lou (2007) Novel and highly regioselective route for synthesis of 5-fluorouridine lipophilic ester derivatives by lipozyme TL IM. J. Biotechnol. 129: 689–695.

    Article  CAS  Google Scholar 

  5. Li, N., M. H. Zong, and D. Ma (2008) Regioselective acylation of nucleosides catalyzed by Candida Antarctica lipase B: Enzyme substrate recognition. Eur. J. Org. Chem. 2008: 5375–5378.

    Article  Google Scholar 

  6. Li, N., M. H. Zong, and D. Ma (2009) Regioselective acylation of nucleosides and their analogs catalyzed by Pseudomonas cepacia lipase: Enzyme substrate recognition. Tetrahed. 65: 1063–1068.

    Article  CAS  Google Scholar 

  7. Clercq, E. De (2011) A 40-year journey in the antiviral drug field. Ann. R. Pharm. 51: 1–24.

    Article  Google Scholar 

  8. Lum, P. Y., L. Y. Ngo, A. H. Bakken, and J. D. Unadkat (2000) Human intestinal es nucleoside transporter: Molecular characterization and nucleoside inhibitory profiles. Canc. Chemot. 45: 273–278.

    CAS  Google Scholar 

  9. Zeng, H., Z. P. Lin, and A. C. Sartorelli (2004) Resistance to purine and pyrimidine nucleoside and nucleobase analogs by the human MDR1 transfected murine leukemia cell line L1210/ VMDRC. 06. Biochem. Pharmacol. 68: 911–921.

    Article  CAS  Google Scholar 

  10. Bello, A. M., D. Konforte, E. Poduch, C. Furlonger, L. Wei, Y. Liu, M. Lewis, E. F. Pai, C. J. Paige, and L. P. Kotra (2009) Structure-activity relationships of orotidine-5′-monophosphate decarboxylase inhibitors as anticancer agents. J. Med. Chem. 52: 1648–1658.

    Article  CAS  Google Scholar 

  11. Plevová, J., F. H. Mohamed, and I. Jank (1971) Elimination of 2′,3′,5′-tri-O-acetyl-6-azauridine in the rat and in man. Biochem. Pharmacol. 20: 2079–2083.

    Article  Google Scholar 

  12. Zinni, M. A., L. E. Iglesias, and A. M. Iribarren (2007) Preparation of potential 3-deazauridine and 6-azauridine prodrugs through an enzymatic alcoholysis. J. Mol. Catal. B-Enz. 47: 86–90.

    Article  CAS  Google Scholar 

  13. Díaz-Rodríguez, A., S. Fernández, Y. S. Sanghvi, M. Ferrero, and V. Gotor (2006) Novel chemoenzymatic protocol for the synthesis of 3-O-dimethoxytrityl-2-deoxynucleoside derivatives as building blocks for oligonucleotide synthesis. Org. Process Res. Dev. 10: 581–587.

    Article  Google Scholar 

  14. Wang, Z. Y., N. Li, and M. H. Zong (2009) A simple procedure for the synthesis of potential 6-azauridine prodrugs by Thermomyces lanuginosus lipase. J. Mol. Catal. B-Enz. 59: 212–219.

    Article  CAS  Google Scholar 

  15. Wang, Z. Y. and M. H. Zong (2009) Recognition of acyl donors by lipase CAL-B in the acylation of 6-azauridine. Biotechnol. Prog. 25: 784–791.

    Article  Google Scholar 

  16. Hamamura, E. K., M. Prystasz, J. P. H. Verheyden, J. G. Moffatt, K. Yamaguchi, N. Uchida, K. Sato, A. Nomura, and O. Shiratori (1976) Reactions of 2-acyloxyisobutyryl halides with nucleosides. 6. Synthesis and biological evaluation of some 3′-acyl derivatives of 2,2′-anhydro-1-(β-D-arabinofuranosyl) cytosine hydrochloride. J. Med. Chem. 19: 654–662.

    Article  CAS  Google Scholar 

  17. Halling, P. J. (1994) Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enz. Microb. Technol. 16: 178–206.

    Article  CAS  Google Scholar 

  18. Bell, G., P. J. Halling, B. D. Moore, J. Partridge, and D. G. Rees (1995) Biocatalyst behaviour in low-water systems. Trends Biotechnol. 13: 468–473.

    Article  CAS  Google Scholar 

  19. Kumar, V., V. S. Parmar, and S. V. Malhotra (2010) Structural modifications of nucleosides in ionic liquids. Biochimie. 92: 1260–1265.

    Article  CAS  Google Scholar 

  20. Almarsson, O. and A. M. Klibanov (1996) Remarkable activation of enzymes in nonaqueous media by denaturing organic cosolvents. Biotechnol. Bioeng. 49: 87–92.

    Article  CAS  Google Scholar 

  21. Tsikaris, V., M. Sakarellos-Daitsiotis, N. Theophanidis, C. Sakarellos, M. T. Cung, and M. Marraud (1991) Significance of bound residual water in the DMSO solution structure of stable peptide hydrates. J. Chem. Soc., Perkin Trans. 2. 9: 1353–1357.

    Article  Google Scholar 

  22. Anthonsen, T. and B. H. Hoff (1998) Resolution of derivatives of 1, 2-propanediol with lipase B from Candida antarctica: Effect of substrate structure, medium, water activity and acyl donor on enantiomeric ratio. Chem. Phys. Lipids 93: 199–207.

    Article  CAS  Google Scholar 

  23. Chamouleau, F., D. Coulon, M. Girardin, and M. Ghoul (2001) Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media. J. Mol. Catal. B-Enz. 11: 949–954.

    Article  CAS  Google Scholar 

  24. Klibanov, A. M. (2001) Improving enzymes by using them in organic solvents. Nature 409: 241–246.

    Article  CAS  Google Scholar 

  25. Soares, C. M., V. H. Teixeira, and A. M. Baptista (2003) Protein structure and dynamics in nonaqueous solvents: INSIGHTS from molecular dynamics simulation studies. Biophys. J. 84: 1628–1641.

    Article  CAS  Google Scholar 

  26. Weber, H. K., H. Weber, and R. J. Kazlauskas (1999) Watching lipase-catalyzed acylations using 1H NMR: Competing hydrolysis of vinyl acetate in dry organic solvents. Tetrahed. Asymmetr. 10: 2635–2638.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Hua Zong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZY., Bi, YH. & Zong, MH. Regioselective enzymatic procedure for preparing 3′-O-stearoyl-6-azauridine by using Burkholderia cepacia lipase. Biotechnol Bioproc E 17, 393–397 (2012). https://doi.org/10.1007/s12257-011-0483-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0483-y

Keywords

Navigation