Skip to main content
Log in

Mechanism and mathematical modeling of electro-enzymatic denitrification

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, a novel nitrate reduction method using an electro-enzymatic system was investigated to treat an aqueous solution containing high concentrations of nitrate. This system was comprised of working electrodes and their counter electrodes, where enzymes for nitrate removal were located inside the microorganisms. A nitrate reduction mechanism for the electro-enzymatic system was proposed and a mathematical model was developed. The modeling results were compared to the experimental results and all the experimental results fit well with the model; thus, the derived mathematical model can be used for reactor control and effluent prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keith, L. H. and W. A. Telliard (1979) Priority pollutants. I-a perspective view. Special report. Environ. Sci. Technol. 13: 416–423.

    Article  Google Scholar 

  2. Mirvish, S. S. (1977) N-nitroso compounds, nitrite and nitrate: Possible implications for the causation of human cancer. J. Water Pollut. 8: 195–207.

    CAS  Google Scholar 

  3. Winton, E. F. (1971) Nitrate in drinking water. J. AWWA 63: 95–103.

    CAS  Google Scholar 

  4. Gonzalez, P. J., C. Correia, I. Moura, C. D. Brondino, and J. J. G. Moura (2006) Bacterial nitrate reductases: Molecular and biological aspects of nitrate reduction. J. Inorg. Biochem. 100: 1015–1023.

    Article  CAS  Google Scholar 

  5. Berks, B. C., S. J. Ferguson, J. W. B. Moir, and D. J. Richardson (1995) Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta. 1232: 97–173.

    Article  Google Scholar 

  6. Zumft, W. G. (1997) Cell biology and molecular basis of denitrification. Microbiol. Mol Biol. Rev. 61: 533–616.

    CAS  Google Scholar 

  7. Chopin, A., V. Biaudet, and S. D. Ehrlich (1998) Definition and distinction between assimilatory, dissimilatory and respiratory pathways. Mol. Microbiol. 29: 664–666.

    Article  Google Scholar 

  8. Moreno-Vivian, C., P. Cabello, M. Martinez-Luque, R. Blasco, and F. Castillo (1999) Prokaryotic nitrate reduction: Molecular properties and functional distinction among bacterial nitrate reductases. J. Bacteriol. 181: 6573–6584.

    CAS  Google Scholar 

  9. Richardson, D. J. and N. J. Watmough (1999) Inorganic nitrogen metabolism in bacteria. Curr. Opin. Chem. Biol. 3: 207–219.

    Article  CAS  Google Scholar 

  10. Tavares, P., A. S. Pereira, J. J. G. Moura, and I. Moura (2006) Metalloenzymes of the denitrification pathway. J. Biol. Inorg. Chem. 100: 2087–2100.

    CAS  Google Scholar 

  11. Takayama, K. (1998) Biocatalyst electrode modified with wholecells of P. denitrificans for the determination of nitrate. Bioelectrochem. Bioenerg. 45: 67–72.

    CAS  Google Scholar 

  12. Cast, K. L. and J. R. V. Flora (1998) An evolution of two cathode materials and the impact of copper on bio-electrochemical denitrification. Water Res. 32: 63–70.

    Article  CAS  Google Scholar 

  13. Watanabe, T., H. Motoyama, and M. Kuroda (2001) Denitrification and neutralization treatment by direct feeding of an acidic wastewater containing copper ion and high-strength nitrate to a bio-electrochemical reactor process. Water Res. 35: 4102–4110.

    Article  CAS  Google Scholar 

  14. Choi, K. O., S. H. Song, and Y. J. Yoo (2004) Permeabilization of Ochrobactrum anthropi SY509 cells with organic solvents for whole cell biocatalyst. Biotechnol. Bioproc. Eng. 9: 147–150.

    Article  CAS  Google Scholar 

  15. Choi, K. O., S. H. Song, Y. H. Kim, D. H. Park and Y. J. Yoo (2006) Bioelectrochemical denitrification using permeabilized Ochrobactrum anthropi SY509 J Microbiol. Biotechnol. 16: 678–682.

    CAS  Google Scholar 

  16. Kim, Y. H., Y. J. Park, S. H. Song, and Y. J. Yoo (2007) Nitrate removal without carbon source feeding by permeabilized Ochrobactrum anthropi SY509 using an electrochemical bioreactor. Enz. Microb. Technol. 41: 663–668.

    Article  CAS  Google Scholar 

  17. Cho, J. S., J. Y. Park, and Y. J. Yoo (2008) Novel 3-dimensional bioelectrode for mediatorless bioelectrochemical denitrification. Biotechnol. Lett. 30: 1617–1620.

    Article  CAS  Google Scholar 

  18. Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo (2002) Effect of aeration on denitrification by Ochrobactrum anthropi SY509. Biotechnol. Bioproc. Eng. 7: 352–356.

    Article  CAS  Google Scholar 

  19. Gonzalez, P. J., C. Correia, I. Moura, C. D. Brondino, and J. J. G. Moura (2006) Bacterial nitrate reductases: Molecular and biological aspects of nitrate reduction. J. Inorg. Biochem. 100: 1015–1023.

    Article  CAS  Google Scholar 

  20. Godber, B. L. J., J. J. Doel, T. A. Goult, R. Eisenthal, and R. Harrison (2001) Suicide inactivation of xanthine oxidoreductase during reduction of inorganic nitrite to nitric oxide. Biochem. J. 358: 325–333.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Je Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, J.S., Yoo, Y.J. Mechanism and mathematical modeling of electro-enzymatic denitrification. Biotechnol Bioproc E 17, 127–132 (2012). https://doi.org/10.1007/s12257-011-0363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0363-5

Keywords

Navigation