Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock


It is known that seaweeds differ greatly from land plants in their sugar composition. The current research on the L-lactic acid fermentation process focuses on land plant sugars as a carbon source, with the potential of seaweed sugars being largely ignored. This study examined the feasibility of seaweed biomass as a possible carbon source for the production of l-lactic acid, by comparing the fermentation of seaweed sugars (d-galactose, d-mannitol, l-rhamnose, d-glucuronic acid, and l-fucose) and land plant sugars (d-glucose, d-xylose, d-mannose, and l-arabinose). The experiments were repeated with 2 sugar acids (d-gluconic acid, d-glucaric acid) in order to investigate the effect of the degree of reduction of carbon source on the fermentation yield. This research also examined the effect of bacterial strain on the characteristics of fermentation reactions, by conducting l-lactic acid fermentation with 7 different Lactobacillus species. Taking into account the sugar composition of seaweed and the levels of lactic acid production from each pure sugar, it was possible to predict the lactic acid production yield of various seaweeds and land plants. From comparative analysis of the predicted lactic acid production yield, it was found that seaweeds are already comparable to lignocellulosics at the current stage of technology. If new technologies for the utilization of non-fermentable seaweed sugars are developed, seaweeds show promise as an even more useful biomass feedstock than lignocellulosics.

This is a preview of subscription content, access via your institution.


  1. 1.

    Wee, Y. J., J. N. Kim, and H. W. Ryu (2006) Biotechnological production of lactic acid and its recent applications. Food Technol. Biotech. 44: 163–172.

    CAS  Google Scholar 

  2. 2.

    Datta, R. and M. Henry (2006) Lactic acid: recent advances in products, processes and technologies. J. Chem. Technol. Biotechnol. 81: 1119–1129.

    Article  CAS  Google Scholar 

  3. 3.

    Garlotta, D. (2001) A literature review of poly(lactic acid). J. Polym. Environ. 9: 63–84.

    Article  CAS  Google Scholar 

  4. 4.

    Tsuji, H. and Y. Ikada (1992) Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers. Macromolecules 25: 5719–5723.

    Article  CAS  Google Scholar 

  5. 5.

    Sodergard, A. and M. Stolt (2002) Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27: 1123–1163.

    Article  CAS  Google Scholar 

  6. 6.

    Okano, K., T. Tanaka, C. Ogino, H. Fukuda, and A. Kondo (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives and limits. Appl. Microbiol. Biotechnol. 85: 413–423.

    Article  CAS  Google Scholar 

  7. 7.

    Lynd, L. R., R. T. Elamder, and C. E. Wyman (1996) Likely features and costs of mature biomass ethanol technology. Appl. Biochem. Biotechnol. 57–58: 741–761.

    Article  Google Scholar 

  8. 8.

    Huang, L. P., B. Jin, P. Lant, X. Qiao, J. Chen, and W. Sun (2004) Direct fermentation of potato starch in wastewater to lactic acid by Rhizopus oryzae. Biotechnol. Bioprocess Eng. 9: 245–251.

    Article  CAS  Google Scholar 

  9. 9.

    John, R. P., G. S. Anisha, K. M. Nampoothirl, and A. Pandey (2009) Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 27: 145–152.

    Article  CAS  Google Scholar 

  10. 10.

    Hofvendahl K. and B. H. Hagerdal (1997) l-lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci. Enz. Microb. Technol. 20: 301–307.

    Article  CAS  Google Scholar 

  11. 11.

    Taherzadeh, M. J. and K. Karimi (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci. 9: 1621–1651.

    Article  CAS  Google Scholar 

  12. 12.

    Roesijadi, G., S. B. Jones, L. J. Snowden-Swan, and Y. Zhu (2010) Macroalgae as a Biomass Feedstock: A Preliminary Analysis, PNNL 19944.

  13. 13.

    U.S. Department of Agriculture (USDA) (2010) National Nutrient Database for Standard Reference, Release 23.

  14. 14.

    Sheehan, J., A. Aden, K. Paustian, K. Killian, J. Brenner, M. Walsh, and R. Nelson (2004) Energy and environmental aspects of using corn stover for fuel ethanol. J. Ind. Ecol. 7: 117–146.

    Article  Google Scholar 

  15. 15.

    Mittal, A., G. M. Scott, T. E. Amidon, D. J. Kiemle, and A. J. Stipanovic (2009) Quantitative analysis of sugars in wood hydrolysates with 1H NMR during the autohydrolysis of hardwoods. Bioresour. Technol. 100: 6398–6406.

    Article  CAS  Google Scholar 

  16. 16.

    Chang, J. H (2011) Studies on the acid hydrolysis of Ulva pertusa. Master’s Thesis. Pohang University of Science and Technology, Pohang, Gyungbuk, Korea.

    Google Scholar 

  17. 17.

    Do, J. R., Y. J. Nam, J. H. Park, and J. H. Jo (1997) Studies on chemical composition of red algae. J. Korean Fish. Soc. 30: 428–431.

    CAS  Google Scholar 

  18. 18.

    Navarro, D. A. and C. A. Stortz (2003) Determination of the conguration of 3,6-anhydrogalactose and cyclizable α-galactose 6-sulfate units in red seaweed galactans. Carbohydr. Res. 338: 2111–2118

    Article  CAS  Google Scholar 

  19. 19.

    Miller, I. J. (1996) Alginate composition of some New Zealand brown seaweeds. Phytochemistry 41: 1315–1317.

    Article  CAS  Google Scholar 

  20. 20.

    Lauret, R., F. Morel-Deville, F. Berthier, M. Champomier-Verges, P. Postma, S. D. Ehrlich, and M. Zagorec (1996) Carbohydrate utilization in Lactobacillus sake. Appl. Environ. Microbiol. 62: 1922–1927.

    CAS  Google Scholar 

  21. 21.

    Kim, J. H., S. P. Shoemaker, and D. A. Mills (2009) Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology 155: 1351–1359.

    Article  CAS  Google Scholar 

  22. 22.

    Okano, K., S. Yoshida, T. Tanaka, C. Ogino, H. Fukuda, and A. Kondo (2009) Homo D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl. Environ. Microbiol. 75: 5175–5178.

    Article  CAS  Google Scholar 

  23. 23.

    Shuler, M. L. and F. Kargi (2002) Bioprocess Engineering: Basic Concepts. 2nd ed., pp. 211–214. Prentice-Hall Inc., USA.

    Google Scholar 

  24. 24.

    Guyot, J. P., M. Calderon, and J. Morlon-Guyot (2000) Effect of pH control on lactic acid fermentation of starch by Lactobacillus manihotivorans LMG 18010T. J. Appl. Microbiol. 88:176–182.

    Article  CAS  Google Scholar 

  25. 25.

    Pimentel, D. (2003) Ethanol fuels: Energy balance, economics, and environmental impacts are negative. Nat. Resources Res. 12: 127–134.

    Article  Google Scholar 

  26. 26.

    Lloyd, T. A. and C. E. Wyman (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96: 1967–1977.

    Article  CAS  Google Scholar 

  27. 27.

    Zimbardi, F., E. Viola, F. Nanna, E. Larocca, M. Cardinale, and D. Barisano (2007) Acid impregnation and steam explosion of corn stover in batch processes. Ind. Crop. Prod. 26: 195–206.

    Article  CAS  Google Scholar 

  28. 28.

    Iranmahboob, J., F. Nadim, and S. Monemi (2002) Optimizing acid-hydrolysis: A critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 22: 401–404.

    Article  CAS  Google Scholar 

  29. 29.

    Nguyen, Q. A., M. P. Tucker, B. L. Boynton, F. A. Keller, and D. J. Schell (1998) Dilute acid pretreatment of softwoods. Appl. Biochem. Biotechnol. 70–72: 77–87.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sun Bok Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hwang, H.J., Lee, S.Y., Kim, S.M. et al. Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock. Biotechnol Bioproc E 16, 1231–1239 (2011). https://doi.org/10.1007/s12257-011-0278-1

Download citation


  • seaweed
  • lactic acid fermentation
  • Lactobacillus
  • degree of reduction
  • biomass feedstock