Biotechnology and Bioprocess Engineering

, Volume 16, Issue 6, pp 1231–1239 | Cite as

Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock

  • Hyeong Jin Hwang
  • Shin Youp Lee
  • Suk Min Kim
  • Sun Bok LeeEmail author
Research Paper


It is known that seaweeds differ greatly from land plants in their sugar composition. The current research on the L-lactic acid fermentation process focuses on land plant sugars as a carbon source, with the potential of seaweed sugars being largely ignored. This study examined the feasibility of seaweed biomass as a possible carbon source for the production of l-lactic acid, by comparing the fermentation of seaweed sugars (d-galactose, d-mannitol, l-rhamnose, d-glucuronic acid, and l-fucose) and land plant sugars (d-glucose, d-xylose, d-mannose, and l-arabinose). The experiments were repeated with 2 sugar acids (d-gluconic acid, d-glucaric acid) in order to investigate the effect of the degree of reduction of carbon source on the fermentation yield. This research also examined the effect of bacterial strain on the characteristics of fermentation reactions, by conducting l-lactic acid fermentation with 7 different Lactobacillus species. Taking into account the sugar composition of seaweed and the levels of lactic acid production from each pure sugar, it was possible to predict the lactic acid production yield of various seaweeds and land plants. From comparative analysis of the predicted lactic acid production yield, it was found that seaweeds are already comparable to lignocellulosics at the current stage of technology. If new technologies for the utilization of non-fermentable seaweed sugars are developed, seaweeds show promise as an even more useful biomass feedstock than lignocellulosics.


seaweed lactic acid fermentation Lactobacillus degree of reduction biomass feedstock 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wee, Y. J., J. N. Kim, and H. W. Ryu (2006) Biotechnological production of lactic acid and its recent applications. Food Technol. Biotech. 44: 163–172.Google Scholar
  2. 2.
    Datta, R. and M. Henry (2006) Lactic acid: recent advances in products, processes and technologies. J. Chem. Technol. Biotechnol. 81: 1119–1129.CrossRefGoogle Scholar
  3. 3.
    Garlotta, D. (2001) A literature review of poly(lactic acid). J. Polym. Environ. 9: 63–84.CrossRefGoogle Scholar
  4. 4.
    Tsuji, H. and Y. Ikada (1992) Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers. Macromolecules 25: 5719–5723.CrossRefGoogle Scholar
  5. 5.
    Sodergard, A. and M. Stolt (2002) Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27: 1123–1163.CrossRefGoogle Scholar
  6. 6.
    Okano, K., T. Tanaka, C. Ogino, H. Fukuda, and A. Kondo (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives and limits. Appl. Microbiol. Biotechnol. 85: 413–423.CrossRefGoogle Scholar
  7. 7.
    Lynd, L. R., R. T. Elamder, and C. E. Wyman (1996) Likely features and costs of mature biomass ethanol technology. Appl. Biochem. Biotechnol. 57–58: 741–761.CrossRefGoogle Scholar
  8. 8.
    Huang, L. P., B. Jin, P. Lant, X. Qiao, J. Chen, and W. Sun (2004) Direct fermentation of potato starch in wastewater to lactic acid by Rhizopus oryzae. Biotechnol. Bioprocess Eng. 9: 245–251.CrossRefGoogle Scholar
  9. 9.
    John, R. P., G. S. Anisha, K. M. Nampoothirl, and A. Pandey (2009) Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 27: 145–152.CrossRefGoogle Scholar
  10. 10.
    Hofvendahl K. and B. H. Hagerdal (1997) l-lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci. Enz. Microb. Technol. 20: 301–307.CrossRefGoogle Scholar
  11. 11.
    Taherzadeh, M. J. and K. Karimi (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci. 9: 1621–1651.CrossRefGoogle Scholar
  12. 12.
    Roesijadi, G., S. B. Jones, L. J. Snowden-Swan, and Y. Zhu (2010) Macroalgae as a Biomass Feedstock: A Preliminary Analysis, PNNL 19944.Google Scholar
  13. 13.
    U.S. Department of Agriculture (USDA) (2010) National Nutrient Database for Standard Reference, Release 23.Google Scholar
  14. 14.
    Sheehan, J., A. Aden, K. Paustian, K. Killian, J. Brenner, M. Walsh, and R. Nelson (2004) Energy and environmental aspects of using corn stover for fuel ethanol. J. Ind. Ecol. 7: 117–146.CrossRefGoogle Scholar
  15. 15.
    Mittal, A., G. M. Scott, T. E. Amidon, D. J. Kiemle, and A. J. Stipanovic (2009) Quantitative analysis of sugars in wood hydrolysates with 1H NMR during the autohydrolysis of hardwoods. Bioresour. Technol. 100: 6398–6406.CrossRefGoogle Scholar
  16. 16.
    Chang, J. H (2011) Studies on the acid hydrolysis of Ulva pertusa. Master’s Thesis. Pohang University of Science and Technology, Pohang, Gyungbuk, Korea.Google Scholar
  17. 17.
    Do, J. R., Y. J. Nam, J. H. Park, and J. H. Jo (1997) Studies on chemical composition of red algae. J. Korean Fish. Soc. 30: 428–431.Google Scholar
  18. 18.
    Navarro, D. A. and C. A. Stortz (2003) Determination of the conguration of 3,6-anhydrogalactose and cyclizable α-galactose 6-sulfate units in red seaweed galactans. Carbohydr. Res. 338: 2111–2118CrossRefGoogle Scholar
  19. 19.
    Miller, I. J. (1996) Alginate composition of some New Zealand brown seaweeds. Phytochemistry 41: 1315–1317.CrossRefGoogle Scholar
  20. 20.
    Lauret, R., F. Morel-Deville, F. Berthier, M. Champomier-Verges, P. Postma, S. D. Ehrlich, and M. Zagorec (1996) Carbohydrate utilization in Lactobacillus sake. Appl. Environ. Microbiol. 62: 1922–1927.Google Scholar
  21. 21.
    Kim, J. H., S. P. Shoemaker, and D. A. Mills (2009) Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology 155: 1351–1359.CrossRefGoogle Scholar
  22. 22.
    Okano, K., S. Yoshida, T. Tanaka, C. Ogino, H. Fukuda, and A. Kondo (2009) Homo D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl. Environ. Microbiol. 75: 5175–5178.CrossRefGoogle Scholar
  23. 23.
    Shuler, M. L. and F. Kargi (2002) Bioprocess Engineering: Basic Concepts. 2nd ed., pp. 211–214. Prentice-Hall Inc., USA.Google Scholar
  24. 24.
    Guyot, J. P., M. Calderon, and J. Morlon-Guyot (2000) Effect of pH control on lactic acid fermentation of starch by Lactobacillus manihotivorans LMG 18010T. J. Appl. Microbiol. 88:176–182.CrossRefGoogle Scholar
  25. 25.
    Pimentel, D. (2003) Ethanol fuels: Energy balance, economics, and environmental impacts are negative. Nat. Resources Res. 12: 127–134.CrossRefGoogle Scholar
  26. 26.
    Lloyd, T. A. and C. E. Wyman (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96: 1967–1977.CrossRefGoogle Scholar
  27. 27.
    Zimbardi, F., E. Viola, F. Nanna, E. Larocca, M. Cardinale, and D. Barisano (2007) Acid impregnation and steam explosion of corn stover in batch processes. Ind. Crop. Prod. 26: 195–206.CrossRefGoogle Scholar
  28. 28.
    Iranmahboob, J., F. Nadim, and S. Monemi (2002) Optimizing acid-hydrolysis: A critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 22: 401–404.CrossRefGoogle Scholar
  29. 29.
    Nguyen, Q. A., M. P. Tucker, B. L. Boynton, F. A. Keller, and D. J. Schell (1998) Dilute acid pretreatment of softwoods. Appl. Biochem. Biotechnol. 70–72: 77–87.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hyeong Jin Hwang
    • 1
  • Shin Youp Lee
    • 1
  • Suk Min Kim
    • 1
  • Sun Bok Lee
    • 1
    Email author
  1. 1.Department of Chemical EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations