Skip to main content
Log in

Use of protein stability to develop dual luciferase toxicity bioreporter strains

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study presents a simple protocol to measure 2 promoter activities within a single culture when using both Lux and firefly luciferase (FF-Luc) reporters. To demonstrate this, 2 E. coli strains were constructed using 2 compatible plasmids, one harboring a katG::luc fusion gene and the other either a fabA::lux or grpE::lux fusion gene. To differentiate between the FF-Luc and Lux activities within E. coli, we used the instability of the V. fischeri Lux proteins. Basically, it involved a two step assay where (1) without addition of luciferin, only the Lux activity was assayed and (2) with added luciferin and a heat treatment at 42°C, the FF-Luc activity was assayed. This was possible because a shift from 28 to 42°C for 10 min was sufficient to denature/inactivate the Lux proteins to background levels. After treatment, the substrate for FF-Luc was added and the FF-Luc activity could be reliably measured. Using this protocol, it was possible to assay the activities of both bioluminescent reporter proteins and, thus, the relative activity of the different promoters. Subsequent experiments were performed using known inducers of the katG, fabA and grpE promoters where tests were successfully performed with single compound samples as well as samples causing a variety of stresses. These results clearly demonstrated that two promoter activities can be monitored in a single host with this dual-luciferase system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain, V. K. and I. T. Magrath (1991) A chemiluminescent assay for quantitation of beta-galactosidase in the femtogram range: Application to quantitation of beta-galactosidase in lacZ-transfected cells. Anal. Biochem. 199: 119–124.

    Article  CAS  Google Scholar 

  2. Meighen, E. A. (1991) Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55: 123–142.

    CAS  Google Scholar 

  3. Belkin, S., D. R. Smulski, A. C. Vollmer, T. K. Van Dyk, and R. A. LaRossa (1996) Oxidative stress detection with Escherichia coli harboring a katG′::lux fusion. Appl. Environ. Microbiol. 62: 2252–2256.

    CAS  Google Scholar 

  4. Vollmer, A. C., S. Belkin, D. R. Smulski, T. K. Van Dyk, and R. A. LaRossa (1997) Detection of DNA damage by use of Escherichia coli carrying recA_::lux, uvrA_::lux, or alkA_::lux reporter plasmids. Appl. Environ. Microbiol. 63: 2566–2571.

    CAS  Google Scholar 

  5. Mitchell, R. J. and M. B. Gu (2004) An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl. Microbiol. Biotechnol. 64: 46–52.

    Article  CAS  Google Scholar 

  6. Lee, J. H., R. J. Mitchell, and M. B. Gu (2007) Chemical-specific continuous biomonitoring using a recombinant bioluminescent bacterium DNT5 (nagR-nagAa::luxCDABE). J. Biotechnol. 131: 330–334.

    Article  CAS  Google Scholar 

  7. Cebolla, A., M. E. Vázquez, and A. J. Palomares (1995) Expression vectors for the use of eukaryotic luciferases as bacterial markers with different colors of luminescence. Appl. Environ. Microbiol. 61: 660–668.

    CAS  Google Scholar 

  8. Justus, T. and S. M. Thomas (1999) Evaluation of transcriptional fusions with green fluorescent protein versus luciferase as reporters in bacterial mutagenicity tests. Mutagenesis 14: 351–356.

    Article  CAS  Google Scholar 

  9. Quillardet, P. and M. Hofnung (1993) The SOS chromotest: A review. Mutat. Res. 297: 235–279.

    CAS  Google Scholar 

  10. Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher (1994) Green fluorescent protein as a marker for gene expression. Sci. 263: 802–805.

    Article  CAS  Google Scholar 

  11. Cha, H. J., R. Srivastava, V. N. Vakharia, G. Rao, and W. E. Bentley (1999) Green Fluorescent protein as a noninvasive stress probe in resting Escherichia coli cells. Appl. Env. Microbiol. 65: 409–414.

    CAS  Google Scholar 

  12. Kalir, S., J. McClure, K. Pabbaraju, C. Southward, M. Ronen, S. Leibler, M. Surette, and U. Alon (2001) Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Sci. 292: 2080–2083.

    Article  CAS  Google Scholar 

  13. Mitchell, R. J. and M. B. Gu (2004) Construction and characterization of novel dual stress-responsive bacterial biosensors Biosens. Bioelectron. 19: 977–985.

    Article  CAS  Google Scholar 

  14. Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon (2002) Network motifs: Simple building blocks of complex networks. Sci. 298: 824–827.

    Article  CAS  Google Scholar 

  15. Ronen, M., R. Rosenberg, B. I. Shraiman, and U. Alon (2002) Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. USA. 99: 10555–10560.

    Article  CAS  Google Scholar 

  16. Shen-Orr, S. S., R. Milo, S. Mangan, and U. Alon (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31: 64–68.

    Article  CAS  Google Scholar 

  17. Shapiro, E., C. Lu, and F. Baneyx (2005) A set of multicolored Photinus pyralis luciferase mutants for in vivo bioluminescence applications. Protein Eng. Design Selec. 18: 581–587.

    Article  CAS  Google Scholar 

  18. Tauriainen, S., M. Virta, W. Chang, and M. Karp (1999) Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors. Anal. Biochem. 272: 191–198.

    Article  CAS  Google Scholar 

  19. Van Dyk, T. K., W. R. Majarian, K. B. Konstantinov, R. M. Young, P. S. Dhurjati, and R. A. LaRossa (1994) Rapid and sensitive pollutant detection by induction of heat shock gene bioluminescence gene fusions. Appl. Environ. Microbiol. 60: 1414–1420.

    Google Scholar 

  20. Choi, S. H. and M. B. Gu (2001) Phenolic toxicity-detection and classification through the use of a recombinant bioluminescent Escherichia coli. Environ. Toxicol. Chem. 20: 248–255.

    CAS  Google Scholar 

  21. Wood, K. V. and M. DeLuca (1987) Photographic detection of luminescence in Escherichia coli containing the gene for firefly luciferase. Anal. Biochem. 161: 501–507.

    Article  CAS  Google Scholar 

  22. Van Dyk, T. K., E. J. DeRose, and G. E. Gonye (2001) LuxArray, a high-density, genomewide transcription analysis of Escherichia coli using bioluminescent reporter strains. J. Bacteriol. 183: 5496–5505.

    Article  Google Scholar 

  23. Ahn, J. M., R. J. Mitchell, and M. B. Gu (2004) Detection and classification of oxidative damaging stresses using recombinant bioluminescent bacteria harboring sodA::, pqi::, and katG::luxCDABE fusions. Enz. Microbial. Technol. 35: 540–544.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Bock Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, R.J., Gu, M.B. Use of protein stability to develop dual luciferase toxicity bioreporter strains. Biotechnol Bioproc E 16, 1254–1261 (2011). https://doi.org/10.1007/s12257-011-0184-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0184-6

Keywords

Navigation