Skip to main content
Log in

Production and purification of the phosphoprotein of Nipah virus in Escherichia coli for use in diagnostic assays

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Nipah Virus (NiV) is an emerging zoonotic paramyxovirus that can be fatal in humans and various types of animals. The phospho (P) protein of NiV plays an important role in RNA synthesis, replication, and genome synthesis. In this study, the NiV P gene was cloned into a pTrcHis2-TOPO vector and the recombinant protein containing a His-tag was produced in Escherichia coli. SDS-PAGE and Western blot analysis using the anti-His antibody confirmed the protein expression. An optimization study of E. coli fermentation showed that the optimal cultivation temperature was 37°C, while the optimal induction time for P protein expression was at 9 h with 1 mM IPTG. Solubility analysis showed that E. coli cultivated at 37°C produced the highest fraction (70%) of soluble P protein. The recombinant P protein was purified from clarified E. coli lysate using an immobilized metal affinity chromatography (IMAC) technique to a purity of 92.67%, with a purification factor of 11.58. The purified P protein strongly reacted with the anti-NiV swine sera collected during a NiV outbreak, suggesting its potential as a diagnostic reagent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chua, K. B., W. J. Bellini, P. A. Rota, B. H. Harcourt, A. Tamin, S. K. Lam, T. G. Ksiazek, P. E. Rollin, S. R. Zaki, W. J. Shieh, C. S. Goldsmith, J. T. Roehrig, B. Eaton, A. R. Gould, J. Olson, H. Field, P. Daniel, A. E. Ling, C. J. Peters, L. J. Anderson, and B. W. J. Mahy (2000) Nipah virus: A recently emergent deadly paramyxovirus. Science 288: 1432–1435.

    Article  CAS  Google Scholar 

  2. Harcourt, B. H., L. Lowe, A. Tamin, X. Liu, B. Bankamp, N. Bowden, P. E. Rollin, J. A. Comer, T. G. Ksiazek, M. J. Hossain, E. S. Gurley, R. F. Breiman, W. J. Bellini, and P. A. Rota (2005) Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg. Infect. Dis. 11: 1594–1597.

    CAS  Google Scholar 

  3. Halpin, K., P. L. Young, H. E. Field, and J. S. Mackenzie (2000) Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J. Gen. Virol. 81: 1927–1932.

    CAS  Google Scholar 

  4. Chua, K. B., C. L. Koh, P. S. Hooi, K. F. Wee, J. H. Khong, B. H. Chua, Y. P. Chan, M. E. Lim, and S. K. Lam (2002) Isolation of Nipah virus from Malaysian Island flying foxes. Microb. Infect. 4: 145–151.

    Article  Google Scholar 

  5. Wang, L. F., B. H. Harcourt, M. Yu, A. Tamin, P. A. Rota, W. J. Bellini, and B. T. Eaton (2001) Molecular biology of Hendra and Nipah viruses. Microb. Infect. 3: 279–287.

    Article  CAS  Google Scholar 

  6. Lo, M. K. and P. A. Rota (2008) The emergence of Nipah virus, a highly pathogenic paramyxovirus. J. Clin. Virol. 43: 396–400.

    Article  CAS  Google Scholar 

  7. Dillon, P. J. and G. D. Parks (2007) Role for the Phosphoprotein P subunit of the paramyxovirus polymerase in limiting induction of host cell antiviral responses. J. Virol. 81: 11116–11127.

    Article  CAS  Google Scholar 

  8. Wang, L. F., M. Yu, E. Hansson, L. I. Pritchard, B. Shiell, W. P. Michalski, and B. T. Eaton (2000) The exceptionally large genome of Hendra virus: Support for creation of a new genus within the family Paramyxoviridae. J. Virol. 74: 9972–9979.

    Article  CAS  Google Scholar 

  9. Chen, J. M., K. C. Yaiw, M. Yu, L. F. Wang, Q. H. Wang, G. Grameri, and Z. L. Wang (2007) Expression of truncated phosphoprotein of Nipah virus and Hendra virus in Escherichia coli for the differentiation of Henipavirus. Biotechnol. Lett. 29: 871–875.

    Article  CAS  Google Scholar 

  10. Porath, J., J. Carlsson, I. Olsson, and G. Belfrage (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258: 598–599.

    Article  CAS  Google Scholar 

  11. Hochuli, E., W. Bannwarth, H. Dobeli, R. Gentz, and D. Stuber (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. J. Nature Biotechnol. 6: 1321–1325.

    Article  CAS  Google Scholar 

  12. Sharma, S. and G. P. Agarwal (2001) Interactions of proteins with immobilized metal ions: role of ionic strength and pH. J. Colloid Interface Sci. 243: 61–72.

    Article  CAS  Google Scholar 

  13. Chong, F. C., W. S. Tan, D. R. A. Biak, T. C. Ling, and B. T. Tey (2009) Purification of histidine-tagged nucleocapsid protein of Nipah virus using immobilized metal affinity chromatography. J. Chromatogr. B 877: 1561–1567.

    Article  CAS  Google Scholar 

  14. Coligan, J. E., B. M. Dunn, H. L. Plooegh, D. W. Speicheir, and P. T. Wingfield (2000) Current Protocols in Proteins Science. pp. 5.2.10–5.2.11. John Wiley & Sons, Inc., NY, USA.

    Google Scholar 

  15. Tan, W. S., S. T. Ong, M. Eshagi, S. S. Foo, and K. Yusoff (2004) Solubility, immunogenicity and physical properties of the nucleocapsid protein of Nipah virus produced in Escherichia coli. J. Med. Virol. 73: 105–112.

    Article  CAS  Google Scholar 

  16. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  17. Yap, W. B., B. T. Tey, N. B. M. Alitheen, and W. S. Tan (2010) Purification of the His-tagged hepatitis B core antigen from unclarified bacterial homogenate using immobilized metal affinity-expanded bed adsorption chromatography. J. Chromatogr. A 1217: 3473–3480.

    Article  CAS  Google Scholar 

  18. Towbin, H., T. Staehelin, and J. Gordon (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Nat. Acad. Sci. USA. 76: 4350–4354.

    Article  CAS  Google Scholar 

  19. Chan, Y. P., C. L. Koh, S. K. Lam, and L. F. Wang (2004) Mapping of domains responsible for nucleocapsid protein-phosphoprotein interaction of henipaviruses. J. Gen. Virol. 85: 1675–1684.

    Article  CAS  Google Scholar 

  20. Wang, L. F., W. P. Michalski, M. Yu, L. I. Pritchard, G. Crameri, B. Shiell, and B. T. Eaton (1998) A novel P/V/C gene in a new member of the Paramyxoviridae family which causes lethal infection in humans, horses, and other animals. J. Virol. 72: 1482–1490.

    CAS  Google Scholar 

  21. Curran, J., J. Marq, and D. Kolakofsky (1995) An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication. J. Virol. 69: 849–855.

    CAS  Google Scholar 

  22. Kho, C. L., W. S. Tan, and K. Yusoff (2002) Cloning and expression of the phosphoprotein gene of Newcastle disease virus in Escherichia coli. J. Biochem. Mol. Biol. Biophys. 6: 117–121.

    Article  CAS  Google Scholar 

  23. Brian, J. S., D. R. Gardner, G. Crameri, B. T. Eaton, and W. P. Michalski (2003) Sites of phosphorylation of P and V proteins from Hendra and Nipah viruses: Newly emerged members of Paramyxoviridae. Virus Res. 92: 55–65.

    Article  Google Scholar 

  24. Clemmitt, R. H. and H. A. Chase (2000) Facilitated downstream processing of a histidine-tagged protein from unclarified Escherichia coli homogenate using immobilized metal affinity expandedbed adsorption. Biotechnol. Bioeng. 67: 206–216.

    Article  CAS  Google Scholar 

  25. Johnson, R. D., R. J. Todd, and F. H. Arnold (1996) Multipoint binding in metal-affinity chromatography II. Effect of pH and imidazole on chromatographic retention of engineered histidinecontaining cytochromes c. J. Chromatogr. A 725: 225–235.

    Article  CAS  Google Scholar 

  26. Tan, Y. P., T. C. Ling, W. S. Tan, K. Yusoff, and B. T. Tey (2006) Recovery of histidine-tagged nucleocapsid protein of Newcastle disease virus using immobilized metal affinity chromatography. Proc. Biochem. 41: 874–881.

    Article  CAS  Google Scholar 

  27. Porath, J. (1988) IMAC-Immobilized metal ion affinity based chromatography. Trends Anal. Chem. 7: 254–259.

    Article  CAS  Google Scholar 

  28. Clemmitt, R. H., L. J. Bruce, and H. A. Chase (1999) On-line monitoring of the purification of GST-(His) from an unclarified Escherichia coli homogenate within an immobilized metal affinity expanded bed. Bioseparation 8: 53–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Siang Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvamani, S., Tey, B.T., Ng, W.C. et al. Production and purification of the phosphoprotein of Nipah virus in Escherichia coli for use in diagnostic assays. Biotechnol Bioproc E 16, 1166–1172 (2011). https://doi.org/10.1007/s12257-011-0095-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0095-6

Keywords

Navigation