Skip to main content
Log in

In silico improvement of heterologous biosynthesis of erythromycin precursor 6-deoxyerythronolide B in Escherichia coli

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The heterologous biosynthesis of 6-deoxyerythronolide B (6dEB), a key intermediate in the biosynthesis of erythromycin, has recently been achieved in Escherichia coli, but the experimental product yield remains low. In this study, in silico strategies were adopted to evaluate and improve the biosynthesis of 6dEB in this strain. The theoretical capability of E. coli to produce 6dEB was first evaluated by analyzing the maximum theoretical molar yield (MTMY) of 6dEB utilizing three carbon sources, glucose, propionate and glycerol. Although propionate is presently most often used experimentally, our results indicated that glucose would be the most feasible substrate for 6dEB production from economic and long-term standpoints. Compared with Saccharomyces cerevisiae and Bacillus subtilis, E. coli was found to be a better heterologous host for the biosynthesis of 6dEB due to the higher MTMY value under the same conditions. Two strategies, including a flux distribution comparison analysis (FDCA) and linear minimization of metabolic adjustment based (LMOMA-based) methods, were proposed and employed for in silico strain improvement of 6dEB production, which yielded several potential gene targets for future experimental validation. In a further analysis, increasing the specific growth rate (SGR) or the non-growth associated maintenance (NGAM) was found to decrease the MTMY; while increasing the specific oxygen uptake rate (SOUR) or the specific carbon source uptake rate (SCUR) increased the MTMY. Taken together, our findings identified key factors directly affecting the MTMY of 6dEB production, which will guide future experimental research or even the industrial production of 6dEB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y. and B. A. Pfeifer (2008) 6-deoxyerythronolide B production through chromosomal localization of the deoxyerythronolide B synthase genes in E. coli. Metab. Eng. 10: 33–38.

    Article  Google Scholar 

  2. Zou, X., H. F. Hang, J. Chu, Y. P. Zhuang, and S. L. Zhang (2009) Enhancement of erythromycin A production with feeding available nitrogen sources in erythromycin biosynthesis phase. Bioresour. Technol. 100: 3358–3365.

    Article  CAS  Google Scholar 

  3. Pfeifer, B., Z. Hu, P. Licari, and C. Khosla (2002) Process and metabolic strategies for improved production of Escherichia coli-derived 6-deoxyerythronolide B. Appl. Environ. Microbiol. 68: 3287–3292.

    Article  CAS  Google Scholar 

  4. Pfeifer, B. A., S. J. Admiraal, H. Gramajo, D. E. Cane, and C. Khosla (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Sci. 291: 1790–1792.

    Article  CAS  Google Scholar 

  5. Pfeifer, B. A. and C. Khosla (2001) Biosynthesis of polyketides in heterologous hosts. Microbiol. Mol. Biol. Rev. 65: 106–118.

    Article  CAS  Google Scholar 

  6. Wang, Y., B. A. Boghigian, and B. A. Pfeifer (2007) Improving heterologous polyketide production in Escherichia coli by overexpression of an S-adenosylmethionine synthetase gene. Appl. Microbiol. Biotechnol. 77: 367–373.

    Article  CAS  Google Scholar 

  7. Gonzalez-Lergier, J., L. J. Broadbelt, and V. Hatzimanikatis (2006) Analysis of the maximum theoretical yield for the synthesis of erythromycin precursors in Escherichia coli. Biotechnol. Bioeng. 95: 638–644.

    Article  CAS  Google Scholar 

  8. Feist, A. M., C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce, P. D. Karp, L. J. Broadbelt, V. Hatzimanikatis, and B. O. Palsson (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3: 121.

    Article  Google Scholar 

  9. Lee, J. M., E. P. Gianchandani, and J. A. Papin (2006) Flux balance analysis in the era of metabolomics. Brief Bioinform. 7: 140–150.

    Article  Google Scholar 

  10. Yoon, S. H., Y. M. Lee, J. E. Kim, S. H. Lee, J. H. Lee, J. Y. Kim, K. H. Jung, Y. C. Shin, J. D. Keasling, and S. W. Kim (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol. Bioeng. 94: 1025–1032.

    Article  CAS  Google Scholar 

  11. Price, N. D., J. A. Papin, C. H. Schilling, and B. O. Palsson (2003) Genome-scale microbial in silico models: The constraints-based approach. Trends Biotechnol. 21: 162–169.

    Article  CAS  Google Scholar 

  12. Varmar, A. and B. O. Palsson (1993) Metabolic capabilities of Escherichia-coli: II Optimal-growth patterns. J. Theor. Biol. 165: 503–522.

    Article  Google Scholar 

  13. Varmar, A. and B. O. Palsson (1993) Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors. J. Theor. Biol. 165: 477–502.

    Article  Google Scholar 

  14. Reed, J. L., T. D. Vo, C. H. Schilling, and B. O. Palsson (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4: 54.

    Article  Google Scholar 

  15. Alper, H., K. Miyaoku, and G. Stephanopoulos (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 23: 612–616.

    Article  CAS  Google Scholar 

  16. Alper, H. and G. Stephanopoulos (2008) Uncovering the gene knockout landscape for improved lycopene production in E. coli. Appl. Microbiol. Biotechnol. 78: 801–810.

    Article  CAS  Google Scholar 

  17. Jin, Y. S. and G. Stephanopoulos (2007) Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab. Eng. 9: 337–347.

    Article  CAS  Google Scholar 

  18. Lee, K. H., J. H. Park, T. Y. Kim, H. U. Kim, and S. Y. Lee (2007) Systems metabolic engineering of Escherichia coli for Lthreonine production. Mol. Syst. Biol. 3: 149.

    Article  CAS  Google Scholar 

  19. Lee, S. J., D. Y. Lee, T. Y. Kim, B. H. Kim, J. Lee, and S. Y. Lee (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl. Environ. Microbiol. 71: 7880–7887.

    Article  CAS  Google Scholar 

  20. Becker, S. A., A. M. Feist, M. L. Mo, G. Hannum, B. O. Palsson, and M. J. Herrgard (2007) Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox. Nat. Protoc. 2: 727–738.

    Article  CAS  Google Scholar 

  21. Segre, D., D. Vitkup, and G. M. Church (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99: 15112–15117.

    Article  CAS  Google Scholar 

  22. Boghigian, B. A., K. Lee, and B. A. Pfeifer (2009) Computational analysis of phenotypic space in heterologous polyketide biosynthesis—applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae. J. Theor. Biol. 262: 197–207.

    Article  Google Scholar 

  23. Shiba, Y., E. M. Paradise, J. Kirby, D. K. Ro, and J. D. Keasling (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 9: 160–168.

    Article  CAS  Google Scholar 

  24. Herrgard, M. J., N. Swainston, P. Dobson, W. B. Dunn, K. Y. Arga, M. Arvas, N. Bluthgen, S. Borger, R. Costenoble, M. Heinemann, M. Hucka, N. Le Novere, P. Li, W. Liebermeister, M. L. Mo, A. P. Oliveira, D. Petranovic, S. Pettifer, E. Simeonidis, K. Smallbone, I. Spasic, D. Weichart, R. Brent, D. S. Broomhead, H. V. Westerhoff, B. Kirdar, M. Penttila, E. Klipp, B. O. Palsson, U. Sauer, S. G. Oliver, P. Mendes, J. Nielsen, and D. B. Kell (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26: 1155–1160.

    Article  CAS  Google Scholar 

  25. Oh, Y. K., B. O. Palsson, S. M. Park, C. H. Schilling, and R. Mahadevan (2007) Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J. Biol.Chem. 282: 28791–28799.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailin Meng.

Additional information

First two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, H., Lu, Z., Wang, Y. et al. In silico improvement of heterologous biosynthesis of erythromycin precursor 6-deoxyerythronolide B in Escherichia coli . Biotechnol Bioproc E 16, 445–456 (2011). https://doi.org/10.1007/s12257-010-0321-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0321-7

Keywords

Navigation