Skip to main content
Log in

Decolorization method of crude alkaline protease preparation produced from an alkalophilic Bacillus clausii

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Diaion HPA75 decolorized efficiently the crude preparation of novel alkaline protease produced by Bacillus clausii. The optimum concentrations of HPA75 and contact time for efficient decolorization were determined to be approximately 6 ∼ 10% (w/v) and 8 h, respectively. Color removal efficiency was improved at alkaline pH, and 21% color intensity was retained with a protease yield of 99.7% at pH 11. By using highly concentrated samples, a pattern of decolorization was achieved that was similar to that produced by unconcentrated enzyme preparations. After treatment with 6% HPA75 for 8 h, the residual color intensity was approximately 20% with a protease yield of nearly 100%. Used HPA75 could be regenerated easily, and the regenerated HPA75 was as effective as the fresh HPA75 for decolorization and protease recovery. The regeneration efficiency of the used Diaion HPA75 was greater than 90% until it was used four times. Considering these results, we suggest Diaion HPA75 is suitable for color removal applications, producing high protease yields from fermented broth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang (2002) Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii identified from the Korean polychaeta, Periserrula leucophryna. Proc. Biochem. 38: 155–159.

    Article  CAS  Google Scholar 

  2. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang (2003) Oxidant and SDS-stable alkaline protease from Bacillus clausii: Production and some properties. J. Appl. Microbiol. 95: 267–272.

    Article  CAS  Google Scholar 

  3. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang (2004) Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna. Proc. Biochem. 39: 1441–1447.

    Article  CAS  Google Scholar 

  4. Joo, H. S., Y. M. Koo, J. W. Choi, and C. S. Chang (2005) Stabilization method of an alkaline protease from inactivation by SDS and hydrogen peroxide. Enz. Micro. Technol. 36: 766–772.

    Article  CAS  Google Scholar 

  5. Horikoshi, K. (1999) Alkalophiles: Some applications of their products for biotechnology. Microb. Mol. Biol. Rev. 63: 735–750.

    CAS  Google Scholar 

  6. Masui, A., N. Fujiwara, M. Takagi, and T. Imanaka (1999) Feasibility study for decomposition of gelatin layers on X-ray films by thermostable alkaline protease from alkaliphilic Bacillus sp. Biotechnol. Lett. 13: 813–815.

    CAS  Google Scholar 

  7. Gupta, R., Q. K. Beg, S. Khan, and B. Chauhan (2002) An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. 60: 381–395.

    Article  CAS  Google Scholar 

  8. Gupta, R., Q. K. Beg, and P. Lorenz (2002b) Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15–32.

    Article  CAS  Google Scholar 

  9. Kirk, O., T. V. Borchert, and C. C. Fuglsang (2002) Industrial enzyme applications. Curr. Opinions Biotechnol. 13: 345–351.

    Article  CAS  Google Scholar 

  10. Beg, Q. K. and R. Gupta (2003) Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enz. Microb. Technol. 32: 294–304.

    Article  CAS  Google Scholar 

  11. Dayanandan, A., J. Kanagaraj, L. Sounderraj, and G. S. Rajkumar (2003) Application of an alkaline protease in leather processing: An ecofriendly approach. J. Cleaner. Prod. 11: 533–536.

    Article  Google Scholar 

  12. Freddi, G., R. Mossotti, and R. Innocenti (2003) Degumming of silk fabric with several proteases. J. Biotechnol. 106: 101–112.

    Article  CAS  Google Scholar 

  13. Gibbs, B. F., A. Zougman, R. Masse, and C. Mulligan (2004) Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res. Int. 37: 123–131.

    Article  CAS  Google Scholar 

  14. Masui, A., M. Yasuda, N. Fujiwara, M. Takagi, and H. Ishikawa (2004) Enzymatic hydrolysis of gelatin layers on used Lith film using thermostable alkaline protease for recovery of silver and PET film. Biotechnol. Progress 20: 1267–1269.

    Article  CAS  Google Scholar 

  15. Stevenson, D. E., D. J. Ofman, and G. A. Fenton (1998) Proteasecatalysed condensation-oligomerisation of hydrophobic peptides as a means of flavour modification. J. Mol. Catalysis. B: Enzymatic 5: 39–44.

    Article  CAS  Google Scholar 

  16. Joo, H. S. and C. S. Chang (2006) Production of an oxidant and SDS-stable alkaline protease from an alkalophilic Bacillus clausii l–52 by submerged fermentation: Feasiblity as a laundry detergent addtitive. Enz. Microb. Technol. 38: 176–183.

    Article  CAS  Google Scholar 

  17. Kumar, C. G. and P. Parrack (2003) Activated charcoal: A versatile decolorization agent for the recovery and purification of alkaline protease. World J. Microbiol. Biotechnol. 19: 243–246.

    Article  Google Scholar 

  18. Galvano, F., A. Pietri, T. Bertuzzi, G. Fusconi, M. Galvano, A. Piva, and G. Piva (1996) Reduction of carryover of aflatoxin from cow feed to milk by addition of activated carbon. J. Food Protect. 59: 551–554.

    CAS  Google Scholar 

  19. Mohan, S. V. and J. Karthikeyan (1997) Removal of lignin and tannin color from aqueous solution by adsorption onto activated charcoal. Environ. Pollut. 97: 183–187.

    Article  CAS  Google Scholar 

  20. Couteau, D. and P. Mathaly (1998) Fixed-bed purification of ferulic acid from sugar-beet pulp using activated carbon: Optimization studies. Bioresour. Technol. 64: 17–25.

    Article  CAS  Google Scholar 

  21. Aikat, K. and B. C. Bhattacharyya (2001) Regeneration of activated charcoal used in decolorization and purification of crude protease from Rhizopus oryzae. Biotechnol. Lett. 23: 1915–1919.

    Article  CAS  Google Scholar 

  22. Aikat, K., T. K. Maiti, and B. C. Bhattacharyya (2001) Decolorization and purification of crude protease from Rhizopus oryzae by activated charcoal and its electrophoretic analysis. Biotechnol. Lett. 23: 295–301.

    Article  CAS  Google Scholar 

  23. Krishnapillai, A. M., K. D. A. Taylor., A. E. J. Morris, and P. C. Quantick (1999) Extraction and purification of hyaluronoglucosidase (EC 3.2.1.35) from Norway lobster (Nephrops norvegicus). Food Chem. 65: 359–365.

    Article  CAS  Google Scholar 

  24. Achaerandio, I., C. Güell, and F. López (2002) Continuous vinegar decolorization with exchange resins. J. Food Engineer. 51: 311–317

    Article  Google Scholar 

  25. Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  26. Joo, H. S. and C. S. Chang (2005) Alkaline protease from a new alkalophilic Bacillus sp. I-312: Optimization and some properties. Proc. Biochem. 40: 1263–1270.

    Article  CAS  Google Scholar 

  27. Baker, F. S., C. E. Miller, A. J. Repik, and E. D. Tolles (1997) Activated carbons. pp. 72–93. In: Ruthven, D. M. (eds.). Encyclopedia of Separation Technology. John Wiley and Sons, NY, USA.

    Google Scholar 

  28. Joo, H. S. and C. S. Chang (2005) Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii: Enhanced production and simple purification. J. Appl. Microbiol. 98: 491–497.

    Article  CAS  Google Scholar 

  29. Singh, J., N. Batra, and R. C. Sobti (2001) Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Proc. Biochem. 36: 781–785.

    Article  CAS  Google Scholar 

  30. Ghorbel, B., A. Sellami-Kamoun, and M. Nasri (2003) Stability studies of protease from Bacillus cereus BG1. Enz. Microb. Technolol. 32: 513–518.

    Article  CAS  Google Scholar 

  31. Baker, F. S., C. E. Miller, A. J. Repik, and E. D. Tolles (1992) Activated carbon. Krik-Othmer Encyclo. Chem. Technol. 4: 1015–1037.

    Google Scholar 

  32. Pradhan, B. K. and N. K. Sandle (1999) Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37: 1323–1332.

    Article  CAS  Google Scholar 

  33. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 22: 680–685.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang Won Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koo, K.B., Joo, HS. & Choi, J.W. Decolorization method of crude alkaline protease preparation produced from an alkalophilic Bacillus clausii . Biotechnol Bioproc E 16, 89–96 (2011). https://doi.org/10.1007/s12257-010-0304-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0304-8

Keywords

Navigation