Skip to main content
Log in

Effects of expression of lcb1/lcb2 and lac1/lag1 genes on the biosynthesis of ceramides

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Ceramides are important signal messenger molecules due to their role in regulating diverse responses such as cell cycle arrest, apoptosis, and senescence. Yeasts are more suitable for ceramides production than any other microorganisms since they grow fast and are non-pathogenic. However, regulations of the expression of genes involved in sphingolipid synthesis pathway are required to enhance ceramides production. In this study, we investigated the effects of co-expression of two pairs of genes that encode for serine palmitoyltransferase and ceramide synthase, respectively. Effect of other genes of the enzymes associated with the sphingolipid synthesis pathway, 3-ketosphinganine reductase and sphinganine C-4 hydroxylase were also studied and compared. The genes were cloned in to pESC-URA vector. Saccharomyces cerevisiae was cultivated aerobically in YPDG medium at 30°C. Ceramides were seperated from cell extracts by solvent extraction and quantified by HPLC with ELSD. The highest ceramides production (10.52 mg ceramides/g cell) was obtained when 3-ketosphinganine reductase, which is encoded by tsc10 gene, was overexpressed. Also, S. cerevisiae SCEL2,1 overexpressing serine palmitoyltransferase encoded by lcb2 and lcb1 genes, and S. cerevisiae SCEG1C1 overexpressing ceramide synthase encode by lag1 and lac1 genes, showed a high level of ceramides production (10.08 mg ceramides/g cell and 9.88 mg ceramides/g cell, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dickson, R. C., C. Sumanasekera, and R. L. Lester (2006) Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog. Lipid Res. 45: 447–465.

    Article  CAS  Google Scholar 

  2. Cowart, L. A. and L. M. Obeid (2007) Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim. Biophys. Acta 1771: 421–431.

    CAS  Google Scholar 

  3. Obeid, L. M., Y. Okamoto, and C. Mao (2002) Yeast sphingolipids: metabolism and biology. Biochim. Biophys. Acta 1585: 163–171.

    CAS  Google Scholar 

  4. Meer, G. V. andJ. C. M. Holthuis (2000) Sphingolipid transport in eukaryotic cells. Biochim. Biophys. Acta. 1486: 145–170.

    Google Scholar 

  5. Kolesnick, R. N. andM. Kronke (1998) Regulation of ceramide production and apoptosis. Annu. Rev. Physiol. 60: 643–665.

    Article  CAS  Google Scholar 

  6. Coderch, L., O. Lopez, A. de la Maza, and J. L. Parra (2003) Ceramides and skin function. Am. J. Clin. Dermatol. 4: 107–129.

    Article  Google Scholar 

  7. Gamard, C. J., G. S. Dbaibo, B. Liu, L. M. Obeid, and Y. A. Hannun (1997) Selective involvement of ceramide in cytokine-induced apoptosis. Ceramide inhibits phorbol ester activation of nuclear factor kappa B. J. Biol. Chem. 272: 16474–16481.

    Article  CAS  Google Scholar 

  8. Dickson, R. C., E. E. Nagiec, M. Skrzypek, P. Tillman, G. B. Wells, and R. L. Lester (1997) Sphingolipids are potential heat stress signals in Saccharomyces. J. Biol. Chem. 272: 30196–30200.

    Article  CAS  Google Scholar 

  9. Rupeic, J. andV. Maric (1998) Isolation and chemical composition of the ceramide of the Candida lipolytica yeast. Chem. Phys. Lipids 91: 153–161.

    Article  Google Scholar 

  10. Rattray, J. B., A. Schibeci, and D. K. Kidby (1975) Lipids of yeasts. Microbiol. Mol. Biol. Rev. 39: 197–231.

    CAS  Google Scholar 

  11. Dickson, R. C. and R. L. Lester (2002) Sphingolipid functions in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1583: 13–25.

    CAS  Google Scholar 

  12. Dickson, R. C. andR. L. Lester (1999) Yeast sphingolipids. Biochim. Biophys. Acta 1426: 347–357.

    CAS  Google Scholar 

  13. Hannun, Y. A., C. Luberto, and K. M. Argraves (2001) Enzymes of sphingolipid metabolism: From modular to integrative signaling. Biochem. 40: 4893–4903.

    Article  CAS  Google Scholar 

  14. Funato, K., B. Vallee, and H. Riezman (2002) Biosynthesis and trafficking of sphingolipids in the yeast Saccharomyces cerevisiae. Biochem. 41: 15105–15114.

    Article  CAS  Google Scholar 

  15. Kim, S. K., Y. H. Noh, J. -R. Koo, and H. S. Yun (2010) Effect of expression of genes in the sphingolipid synthesis pathway on the biosynthesis of ceramide in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 20: 356–362.

    CAS  Google Scholar 

  16. Gable, K., H. Slife, D. Bacikova, E. Monaghan, and T. Dunn (2000) Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J. Biol. Chem. 275: 7597–7603.

    Article  CAS  Google Scholar 

  17. Guillas, I., P. A. Kirchman, R. Chuard, M. Pfefferli, J. C. Jiang, S. M. Jazwinski, and A. Conzelmann (2001) C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J. 20: 2655–2665.

    Article  CAS  Google Scholar 

  18. Sherman, F. (2002) Getting Started with Yeast. pp. 3–41. In:C. Guthrie and G.R. Fink (eds.). Methods in Enzymology: Guide to Yeast Genetics and Molecular and Cell Biology, Academic Press, San Diego, California.

    Chapter  Google Scholar 

  19. Kim, S. K., Y. H. Noh, and H. S. Yun (2008) The ceramide contents of Saccharomyces cerevisiae in batch culture. Kor. J. Biotechnol. Bioeng. 23: 449–451.

    Google Scholar 

  20. Sambrook, J. and D. W. Russell (2001) Molecular Cloning: A Laboratory Manual. 1st ed., pp. 1.116–1.118. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  21. www.yeastgenome.org.

  22. Gietz, R. D. and R. A. Woods (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. pp. 87–96. In:C. Guthrie and G.R. Fink (eds.). Methods in Enzymology: Guide to Yeast Genetics and Molecular and Cell Biology. Academic Press, San Diego, California.

    Chapter  Google Scholar 

  23. Hong, S. P., C. H. Lee, S. K. Kim, H. S. Yun, J. H. Lee, and K. H. Row (2004) Mobile phase compositions for ceramide III by normal phase high performance liquid chromatography. Biotechnol. Bioproc. Eng. 9: 47–51.

    Article  CAS  Google Scholar 

  24. Kang, D. H., S. P. Hong, and K. H. Row (2003) Quantitative analysis of ceramide III of Saccharomyces cerevisiae by normal phase HPLC. J. Liq. Chromatogr. Relat. Technol. 26: 617–627.

    Article  CAS  Google Scholar 

  25. Da Silva, N. A. and J. E. Bailey (1991) Influence of plasmid origin and promoter strength in fermentations of recombinant yeast. Biotechnol. Bioeng. 37: 318–324.

    Article  Google Scholar 

  26. Nam, S. W., H. J. Lim, B. H. Chung, and Y. K. Chang (1996) Expression and secretion of recombinant Inulinase under the control of GAL or GAP promoter in Saccharomyces cerevisiae. Kor. J. Biotechnol. Bioeng. 11: 445–452.

    Google Scholar 

  27. Nagiec, M. M., J. A. Baltisberger, G. B. Wells, and R. L. Lester (1994) The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. Proc. Natl. Acad. Sci. 91: 7899–7902.

    Article  CAS  Google Scholar 

  28. Jiang, J. C., P. A. Kirchman, M. Allen, and S. M. Jazwinski (2004) Suppressor analysis points to the subtle role of the LAG1 ceramide synthase gene in determining yeast longevity. Exp. Gerontol. 39: 999–1009.

    Article  CAS  Google Scholar 

  29. Kolaczkowski, M., A. Kolaczkowska, B. Gaigg, R. Schneiter, and W. S. Moye-Rowley (2004) Differential regulation of ceramide synthase components LAC1 and LAG1 in Saccharomyces cerevisiae Eukaryot. Cell 3: 880–892.

    CAS  Google Scholar 

  30. Bae, J. H., J. H. Sohn, C. S. Park, J. S. Rhee, and E. S. Choi (2004) Cloning and functional characterization of the SUR2/SYR2 gene encoding sphinganine hydroxylase in Pichia ciferrii. Yeast 21: 437–443.

    Article  CAS  Google Scholar 

  31. Grilley, M. M., S. D. Stock, R. C. Dickson, R. L. Lester, and J. Y. Takemoto (1998) Syringomycin action gene SYR2 Is essential for sphingolipid 4-Hydroxylation in Saccharomyces cerevisiae. J. Biol. Chem. 273: 11062–11068.

    Article  CAS  Google Scholar 

  32. Ng, R. and J. Abelson (1980) Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 77: 3912–3916.

    Article  CAS  Google Scholar 

  33. Livak, K. J. andT. D. Schmittgen (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402–408.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Shik Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.K., Noh, Y.H., Koo, JR. et al. Effects of expression of lcb1/lcb2 and lac1/lag1 genes on the biosynthesis of ceramides. Biotechnol Bioproc E 16, 1–6 (2011). https://doi.org/10.1007/s12257-010-0268-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0268-8

Keywords

Navigation