Skip to main content
Log in

Parameter optimization for production of ligninolytic enzymes using agro-industrial wastes by response surface method

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Lignin and manganese peroxidase (LiP, MnP) and laccase production by Phanerocheate chrysosporium was optimized by response surface methodology for brewery waste and apple pomace. The effect of moisture, copper sulphate, and veratryl alcohol (VA) concentrations on enzyme production was studied. Moisture and VA had significant positive effect on MnP and LiP production and the viability of P. chrysosporium (p < 0.05) and copper sulphate produced a negative effect. However, moisture and copper sulphate had a significant positive (p < 0.05) effect on laccase production, but VA had an insignificant positive effect (p < 0.05). Higher values of MnP, LiP and viability of P. chrysosporium on apple pomace (1287.5 U MnP/gds (units/gram dry substrate), 305 U LiP/gds, and 10.38 Log 10 viability) and brewery waste (792 U MnP/gds and 9.83 Log 10 viability) were obtained with 80% moisture, 3 mmol/kg VA, and 0.5 mmol/kg copper. LiP production in brewery waste (7.87 U/gds) was maximal at 70% moisture, 2 mmol/kg VA, and 1 mmol/kg copper. Higher production of laccase in apple pomace (789 U/gds) and brewery waste (841 U/gds) were obtained with 80% moisture, 3 mmol/kg VA, and 1.5 mmol/kg copper. Thus, moisture along with VA and copper sulphate was pertinent for the production of ligninolytic enzymes and increased cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodrìguez Couto, S. and J. L. Toca Herrera (2006) Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 24: 500–513.

    Article  Google Scholar 

  2. Casa, R., A. D’Annibale, F. Pieruccetti, S. R. Stazi, G. Giovannozzi Sermanni, and B. Lo Cascio (2003) Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum DESF.) germinability. Chemosphere 50: 959–966.

    Article  CAS  Google Scholar 

  3. Barclay, C. D., R. L. Legge, and G. F. Farquhar (1993) Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture. Appl. Environ. Microbiol. 59: 1887–1892.

    CAS  Google Scholar 

  4. Moredo, N., M. Lorenzo, A. Domýnguez, D. Moldes, C. Cameselle, and A. Sanroman (2003) Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World J. Microbiol. Biotechnol. 19: 665–669.

    Article  CAS  Google Scholar 

  5. Hatakka, A. (1994) Lignin modifying enzymes from selected white-rot fungi: Production and role in lignin degradation. FEMS Microbiol. Rev. 13: 125–135.

    Article  CAS  Google Scholar 

  6. Hacking, A. J. (1987) Economic Aspects of Biotechnology. Cambridge University Press, Cambridge.

    Google Scholar 

  7. Vendruscolo, F., P. C. M. Albuquerque, F. Streit, E. Esposito, and J. L. Ninow (2008) Apple pomace: A versatile substrate for biotechnological applications. Crit. Rev. Biotechnol. 28: 1–12.

    Article  CAS  Google Scholar 

  8. Mussatto, S. I. (2009) Biotechnological potential of brewing industry by-products. pp. 313–326. In: P. S. Nigam and A. Pandey (eds.). Biotechnology for Agro-Industrial Residues Utilisation. Springer, Netherlands.

    Chapter  Google Scholar 

  9. Viniegra-González, G., N. Favela-Torres, C. N. Aguilar, S. J. Romero-Gómez, G. Díaz-Godínez, and C. Augur (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 13: 157–167.

    Article  Google Scholar 

  10. Lundquist, K. and T. K. Kirk (1978) De novo synthesis and decomposition of veratryl alcohol by a lignin-degrading basidiomycete. Phytochem. 17: 1676.

    Article  CAS  Google Scholar 

  11. Arora, D. S. and P. K. Gill (2001) Comparison of two assay procedures for lignin peroxides. Enz. Microb. Tech. 28: 602–605.

    Article  CAS  Google Scholar 

  12. Alvarez, J. M., P. Canessa, R. A. Mancilla, R. Polanco, P. A. Santibánez, and R. Vicuna (2009) Expression of genes encoding laccase and manganese-dependent peroxidise in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copperfist transcription factor. Fungal Genet. Biol. 46: 104–111.

    Article  CAS  Google Scholar 

  13. Pandey, A. (2003) Solid state fermentation. Biochem. Eng. J. 13: 81–84.

    Article  CAS  Google Scholar 

  14. Boza, A., Y. De la Cruz, G. Jordan, U. Jauregui-Haza, A. Aleman, and I. Caraballo (2000) Statistical optimization of a sustainedrelease matrix tablet of lobenzarit disodium. Drug. Dev. Ind. Pharm. 26: 1303–1307.

    Article  CAS  Google Scholar 

  15. Singh, S. K., J. Dodge, M. J. Durrani, and M. A. Khan (1995) Optimization and characterization of controlled release pellets coated with experimental latex: I. Anionic drug. Int. J. Pharm. 125: 243–255.

    Article  CAS  Google Scholar 

  16. Sanchez-Lafuente, C., S. Furlanetto, and M. Fernandez-Arevalo (2002) Didanosine extended-release matrix tablets: Optimization of formulation variables using statistical experimental design. Int. J. Pharm. 237: 107–118.

    Article  CAS  Google Scholar 

  17. Francis, F., A. Sabu, K. M. Nampoothiri, S. Ramachandran, S. Ghosh, and G. Szakacs (2003) Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem. Eng. J. 107–115.

  18. Gassara, F., S. K. Brar, R. D. Tyagi, M. Verma, and R. Y. Surampalli (2010) Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerocheate chrysosporium. Biochem. Eng. J. 49: 388–394.

    Article  CAS  Google Scholar 

  19. Tien, M. and T. K. Kirk (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc. Natl. Acad. Sci. U S A. 81: 2280–2284.

    Article  CAS  Google Scholar 

  20. Collins, P. J. and A. D. W. Dobson (1997) Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ. Microbiol. 63: 3444–3450.

    CAS  Google Scholar 

  21. Fujian, X., C. H. Zhang, and L. Zuohn (2001) Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam exploded straw as substrate. Biores. Technol. 80: 149–151.

    Article  CAS  Google Scholar 

  22. Thomas, H. A. (1942) Bacterial densities from fermentation tube tests. J. Am. Water Work Assoc. 34: 572–576.

    CAS  Google Scholar 

  23. Gill, P. K. and D. S. Arora (2003) Effect of culture conditions on manganese peroxidase production and activity by some white-rot fungi. J. Ind. Microbiol. Biotechnol. 30: 28–33.

    CAS  Google Scholar 

  24. Baldrian, P. (2003) Interactions of heavy metals with white-rot fungi. Enz. Microb. Technol. 32: 78–91.

    Article  CAS  Google Scholar 

  25. Dittmer, J. K., N. J. Patel, S. W. Dhawale, and S. S. Dhawale (1997) Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS. Microbiol. Lett. 149: 65–70.

    Article  CAS  Google Scholar 

  26. De Jong, E., J. Field, and J. de Bont (1994) Aryl alcohols in the physiology of ligninolytic fungi. FEMS Microbiol. Rev. 13: 153–188.

    Article  Google Scholar 

  27. Vasconcelos, A. F. D., A. M. Barbosa, R. F. H. Dekker, I. S. Scarminio, and M. I. Rezende (2000) Optimisation of laccase production by Botryosphaeria sp. in the presence of veratryl alcohol by the response-surface method. Proc. Biochem. 35: 1131–1138.

    Article  CAS  Google Scholar 

  28. Galhaup, C., H. Wagner, B. Hinterstoisser, and D. Haltrich (2002) Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enz. Microb. Technol. 30: 529–536.

    Article  CAS  Google Scholar 

  29. Tavares, A. P. M., M. A. Z. Coelho, J. A. P. Coutinho, and A. M. R. B. Xavier (2005) Laccase improvement in submerged cultivation: Induced production and kinetic modeling. J. Chem. Technol. Biotechnol. 80: 669–676.

    Article  Google Scholar 

  30. Klonowska, A., J. Le Petit, and T. Tron (2001) Enhancement of minor laccases production in the basidiomycete Marasmius quercophilus C30. FEMS. Microbiol. Lett. 200: 25–30.

    Article  CAS  Google Scholar 

  31. Verma, P. and D. Madamwar (2002) Production of lignolytic enzymes for dye decolourization by cocultivation of White rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid state fermentation. Appl. Biochem. Biotechnol. 102: 109–118.

    Article  Google Scholar 

  32. Mai, C., U. Kües, and H. Militz (2004) Biotechnology in the wood industry. Appl. Microbiol. Biotechnol. 63: 477–494.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur Brar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassara, F., Brar, S.K., Tyagi, R.D. et al. Parameter optimization for production of ligninolytic enzymes using agro-industrial wastes by response surface method. Biotechnol Bioproc E 16, 343–351 (2011). https://doi.org/10.1007/s12257-010-0264-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0264-z

Keywords

Navigation