Skip to main content
Log in

Gene cloning and expression of a 3-ketovalidoxylamine C-N-lyase from Flavobacterium saccharophilum IFO 13984

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we report the first functional cloning and heterogeneous expression of 3-ketovalidoxylamine C-N lyase (E.C. 4.3.3.1) from Flavobacterium saccharophilum IFO 13984. This gene is 1,098 bp in length and encodes a peptide of 366 amino acids. The recombinant C-N lyase was successfully overexpressed in E. coli, and its functional activity, degradation of 3-ketovalidoxylamine A, was confirmed by HPLC analysis. The sequence and phylogenetic analysis showed that the C-N lyase has no similarity with other amine lyases (E.C. 4.3.3) but has similarity with the conserved domain present in SusD and RagB. Thus, the C-N lyase may have a similar binding domain for sugar moieties with SusD/RagB. This genetic information may lead to improvements in C-N lyase function for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kameda, Y. and S. Horii (1972) The unsaturated cyclitol part of the new antibiotics, the validamycins. J. Chem. Soc. Chem. Commun. 12: 746–747.

    Article  Google Scholar 

  2. Kameda, Y., S. Horii, and T. Yamano (1975) Microbial transformation of validamycins. J. Antibiot. 28: 298–306.

    CAS  Google Scholar 

  3. Zheng, Y. G., X. F. Zhang, and Y. C. Shen (2005) Microbial transformation of validamycin A to valienamine by immobilized cells. Biocatal. Biotransform. 23: 71–77.

    Article  CAS  Google Scholar 

  4. Kameda, Y., N. Asano, and M. Teranishi (1981) New intermediates, degradation of validamycin A by Flavobacterium saccharophilum. J. Antibiot. 34: 1237–1240.

    CAS  Google Scholar 

  5. Kameda, Y., N. Asano, M. Teranishi, and K. Matsui (1980) New cyclitols, degradation of validamycin A by Flavobacterium saccharophilum. J. Antibiot. 33: 1573–1574.

    CAS  Google Scholar 

  6. Zheng, Y. G., Y. P. Xue, and Y. C. Shen (2006) Production of valienamine by a newly isolated strain: Stenotrophomonas maltrophilia. Enz. Microb. Technol. 39: 1060–1065.

    Article  CAS  Google Scholar 

  7. Asano, N., M. Takeuchi, and K. Ninomiya (1984) Microbial degradation of validamycin A by Flavobacterium saccharophilum. Enzymatic cleavage of C-N linkage in validoxylamine A. J. Antibiot. 37: 859–867.

    CAS  Google Scholar 

  8. Fukase, H. (1997) Development of voglibose (Basen®), an antidiabetic agent. J. Synth. Org. Chem. 55: 920–925.

    CAS  Google Scholar 

  9. Yin, Y., W. Huang, and D. Chen (2007) Preparation of validoxylamine A by biotransformation of validamycin A using resting cells of a recombinant Escherichia coli. Biotechnol. Lett. 29: 285–290.

    Article  CAS  Google Scholar 

  10. Zhang, J. F., Y. G. Zheng, Y. P. Xue, and Y. C. Shen (2006) Purification and characterization of the glucoside 3-dehydrogenase produced by a newly isolated Stenotrophomonas maltrophilia CCTCC M 204024. Appl. Microbiol. Biotechnol. 71: 638–645.

    Article  CAS  Google Scholar 

  11. Takeuchi, M., N. Asano, Y. Kameda, and K. Matsui (1985) Purification and properties of 3-ketovalidoxylamine A C-N lyase from Flavobacterium saccharophilum. J. Biochem. 98: 1631–1638.

    CAS  Google Scholar 

  12. Takeuchi, M., N. Asano, Y. Kameda, and K. Matsui (1986) Chemical modification by diethylpyrocarbonate of an essential histidine residue in 3-ketovalidoxylamine A C-N lyase. J. Biochem. 99: 1571–1577.

    CAS  Google Scholar 

  13. Takeuchi, M., N. Asano, Y. Kameda, and K. Matsui (1988) Fluorometric studies on the role of calcium in substrate binding to 3-ketovalidoxylamine A C-N lyase. Chem. Pharm. Bull. 36: 3540–3545.

    CAS  Google Scholar 

  14. Takeuchi, M., K. I. Neyazaki, and K. Matsui (1990) Chemical modification by 2,4,6-trinitrobenzenesulfonic acid (TNBS) of an essential amino group in 3-ketovalidoxylamine A C-N lyase. Chem. Pharm. Bull. 38: 1419–1420.

    CAS  Google Scholar 

  15. Saito, H. and K. I. Miura (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72: 619–629.

    Article  CAS  Google Scholar 

  16. Cokesa, Z., H. J. Knackmuss, and P. G. Rieger (2004) Biodegradation of all stereoisomers of the EDTA substitute iminodisuccinate by Agrobacterium tumefaciens BY6 requires an epimerase and a stereoselective C-N lyase. Appl. Env. Microbiol. 70: 3941–3947.

    Article  CAS  Google Scholar 

  17. Negri, A., V. Massey, and C. H. Williams Jr (1987) D-aspartate oxidase from beef kidney. Purification and properties. J. Biol. Chem. 262: 10026–10034.

    CAS  Google Scholar 

  18. Szwajcer, E. and K. Mosbach (1985) Isolation and partial characterization of a D-amino acid oxidase active against cephalosporin C from the yeast Trigonopsis variabilis. Biotechnol. Lett. 7: 1–7.

    Article  CAS  Google Scholar 

  19. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  20. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  21. Kawano, C., H. Katsuki, T. Yoshida, and S. Tanaka (1962) A method for extraction and determination of 2,4-dinitrophenylhydrazones of keto acids. Anal. Biochem. 3: 361–368.

    Article  CAS  Google Scholar 

  22. Bendtsen, J. D., H. Nielsen, G. Von Heijne, and S. Brunak (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783–795.

    Article  Google Scholar 

  23. Koropatkin, N. M., E. C. Martens, J. I. Gordon, and T. J. Smith (2008) Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16: 1105–1115.

    Article  CAS  Google Scholar 

  24. Koropatkin, N. M. and T. J. Smith (2010) SusG: A unique cellmembrane-associated α-Amylase from a prominent human gut symbiont targets complex starch molecules. Structure 18: 200–215.

    Article  CAS  Google Scholar 

  25. Wang, Y. S., Y. G. Zheng, and Y. C. Shen (2007) Isolation and identification of a novel valienamine-producing bacterium. J. Appl. Microbiol. 102: 838–844.

    Article  CAS  Google Scholar 

  26. Tamura, K., J. Dudley, M. Nei, and S. Kumar (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evolution 24: 1596–1599.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Chan Joo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.G., Joo, J.C., Kim, S.K. et al. Gene cloning and expression of a 3-ketovalidoxylamine C-N-lyase from Flavobacterium saccharophilum IFO 13984. Biotechnol Bioproc E 16, 366–373 (2011). https://doi.org/10.1007/s12257-010-0255-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0255-0

Keywords

Navigation