Skip to main content
Log in

Production and characterization of a collagenolytic serine proteinase by Penicillium aurantiogriseum URM 4622: A factorial study

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A 24 full factorial design was used to identify the main effects and interactions of the initial medium pH, soybean flour concentration, temperature and orbital agitation speed on extracellular collagenase production by Penicillium aurantiogriseum URM4622. The most significant variables for collagenase production were soybean flour concentration and initial medium pH that had positive main effects, and temperature that had a negative one. Protein concentration in soybean flour revealed to be a significant factor for the production of a collagenase serine proteinase. The most favorable production conditions were found to be 0.75% soybean flour, pH 8.0, 200 rpm, and 28°C, which led to a collagenase activity of 164 U. The enzyme showed an optimum activity at 37°C and pH 9.0, was stable over wide ranges of pH and temperature (6.0 ∼ 10.0 and 25 ∼ 45°C, respectively) and was strongly inhibited by 10 mM phenylmethylsulphonylfluoride. The firstorder rate constants for collagenase inactivation in the crude extract, calculated from semi-log plots of the residual activity versus time, were used in Arrhenius and Eyring plots to estimate the main thermodynamic parameters of thermoinactivation (E* d = 107.4 kJ/mol and ΔH* d = 104.7 kJ/mol). The enzyme is probably an extracellular neutral serine collagenase effective on azocoll, gelatin and collagen decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sumantha, A., C. Larroche, and A. Pandey (2006) Microbiology and industrial biotechnology of food grade proteases-a perspective. Food Technol. Biotech. 44: 211–220.

    CAS  Google Scholar 

  2. Sandhya, C., A. Sumantha, G. Szakacs, and A. Pandey (2005) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Proc. Biochem. 40: 2689–2694.

    Article  CAS  Google Scholar 

  3. Ravanti, L. and V. M. Kähäri (2000) Matrix metalloproteases in wound repair. Int. J. Mol. Med. 6: 391–407.

    CAS  Google Scholar 

  4. Kang, S., Y. B. Jang, Y. J. Choi, and J. Kong (2005) Purification and properties of a collagenolytic protease produced by marine bacterium Vibrio vulnificus CYK279H. Biotechnol. Bioproc. Eng. 10: 593–598.

    Article  CAS  Google Scholar 

  5. Kim, M., S. E. Hamilton, L. W. Guddat, and C. M. Overall (2007) Plant collagenase: Unique collagenolytic activity of cysteine proteases from ginger. Biochim. Biophys. Acta 1770: 1627–1635.

    Article  CAS  Google Scholar 

  6. Erdeve, O., B. Atasay, and S. Arsan (2007) Collagenase application for amputation in a preterm. Pediatr. Dermatol. 24: 195–196.

    Article  Google Scholar 

  7. Jin, B., H. J. Alter, Z. C. Zhang, J. W. Shih, J. M. Esteban, T. Sun, Y. S. Yang, Q. Qiu, X. L. Liu, L. Yao, H. D. Wang, and L. F. Cheng (2005) Reversibility of experimental rabbit liver cirrhosis by portal collagenase administration. Lab. Invest. 85: 992–1002.

    Article  CAS  Google Scholar 

  8. Matsushita, O., C. M. Jung, J. Minami, S. Katayama, N. Nishi, and A. Okabe (1998) A study of the Collagen-binding Domain of a 116-kDa Clostridium histolyticum Collagenase. J. Biol. Chem. 273: 3643–3648.

    Article  CAS  Google Scholar 

  9. Tran, L. H. and H. Nagano (2002) Isolation and characteristics of Bacillus subtilis CN2 and its collagenase production. J. Food Sci. 67: 1184–1187.

    Article  CAS  Google Scholar 

  10. Nakayama, T., N. Tsuruoka, M. Akai, and T. Nishino (2000) Thermostable collagenolytic activity of a novel Thermophilic isolate, Bacillus sp. Strain NTAp-1. J. Biosci. Bioeng. 89: 612–614.

    Article  CAS  Google Scholar 

  11. Lauer-Fields, J. L., D. Juska, and G. B. Fields (2002) Matrix metalloproteinases and collagen catabolism. Biopolymers 66: 19–32.

    Article  CAS  Google Scholar 

  12. Tamai, E., S. Miyata, H. Tanaka, H. Nariya, M. Suzuki, O. Matsushita, N. Hatano, and A. Okabe (2008) High-level expression of his-tagged clostridial collagenase in Clostridium perfringens. Appl. Microbiol. Biotechnol. 80: 627–635.

    Article  CAS  Google Scholar 

  13. Yakovleva, M. B., T. L. Khoang, and Z. K. Nikitina (2006) Collagenolytic activity in several species of Deuteromycetes under various storage conditions. Appl. Biochem. Micro. 42: 431–434.

    Article  CAS  Google Scholar 

  14. Lima, C. A., P. M. B. Rodrigues, T. S. Porto, D. A. Viana, J. L. Lima Filho, A. L. F. Porto, and M. G. C. Cunha (2009) Production of a collagenase from Candida albicans URM3622. Biochem. Eng. J. 43: 315–320.

    Article  CAS  Google Scholar 

  15. Rao, Y. K., S. Lu, B. Liu, and Y. Tzeng (2006) Enhanced production of an extracellular protease from Beauveria bassiana by optimization of cultivation processes. Biochem. Eng. J. 28: 57–66.

    Article  CAS  Google Scholar 

  16. Joo, H. S., G. C. Park, K. M. Kim, S. R. Paik, and C. S. Chang (2001) Novel alkaline protease from the Polychaeta, Periserrula leucophryna: Purification and characterization. Proc. Biochem. 36: 893–900.

    Article  CAS  Google Scholar 

  17. Joo, H. and C. Chang (2005) Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: Optimization and some properties. Proc. Biochem. 40: 1263–1270.

    Article  CAS  Google Scholar 

  18. Bruns, R. E., I. S. Scarminio, and B. de Barros Neto (2006) Statistical Design-Chemometrics. pp. 1–412. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  19. Wang, Q., Y. Hou, Z. Xu, J. Miao, and G. Li (2008) Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp. NJ341 with response surface methodology. Bioresource Technol. 99: 1926–1931.

    Article  CAS  Google Scholar 

  20. Porto, A. L. F., G. M. Campos-Takaki, and J. L. Lima-Filho (1996) Effects of culture conditions on protease production by Streptomyces clavuligerus growing soy bean flour medium. Appl. Biochem. Biotechnol. 60: 115–122.

    Article  CAS  Google Scholar 

  21. Chavira, R. J., T. J. Burnett, and J. H. Hageman (1984) Assaying proteinases with azocoll. Anal. Biochem. 136: 4446–4450.

    Google Scholar 

  22. Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gardener, M. D. Prevenano, C. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76–85.

    Article  CAS  Google Scholar 

  23. Endo, A., S. Murakawa, and H. Shimizu (1987) Purification and properties of collagenase from Streptomyces species. J. Biochem. 102: 163–177.

    CAS  Google Scholar 

  24. Rosen, H. (1975) A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67: 10–15.

    Article  Google Scholar 

  25. Moore, S. and W. H. Stein (1948) Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 176: 367–388.

    CAS  Google Scholar 

  26. Leighton, T. J., R. H. Doi, R. A. J. Warren, and R. A. Lelen (1973) The relationship of serine protease activity to RNA polymerase modification and sporulation in Bacillus subtilis. J. Mol. Biol. 76: 103–122.

    Article  CAS  Google Scholar 

  27. James, G. T. (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal. Biochem. 86: 574–579.

    Article  CAS  Google Scholar 

  28. Roels, J. A. (1983) Energetics and kinetics in biotechnology. pp. 163–203. Biomedical Press, Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  29. Ariahu, C. C. and A. O. Ogunsua (2000) Thermal degradation kinetics of thiamine in prewinkle based formulated low acidity foods. Int. J. Food Sci. Technol. 35: 315–321.

    Article  CAS  Google Scholar 

  30. Eyring, H. J. (1935) The activated complex in chemical reactions. J. Chem. Phys. 3: 107–115.

    Article  CAS  Google Scholar 

  31. Elibol, M. and A. R. Moreira (2005) Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid substrate fermentation. Proc. Biochem. 40: 1951–1956.

    Article  CAS  Google Scholar 

  32. Chellappan, S., C. Jasmin, S. M. Basheer, and K. K. Elyas (2006) Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid state fermentation. Proc. Biochem. 41: 956–961.

    Article  CAS  Google Scholar 

  33. Laxman, R. S., A. P. Sonawane, S. V. More, B. S. Rao, M. V. Rele, V. V. Jogdand, V. V. Deshpande, and M. B. Rao (2005) Optimization and scale up of production of alkaline protease from Conidiobolus coronatus. Proc. Biochem. 40: 3152–3158.

    Article  CAS  Google Scholar 

  34. Anandan, D., W. N. Marmer, and R. L. Dudley (2007) Isolation, characterization and optimization of culture parameters for production of an alkaline protease isolated from Aspergillus tamarii. J. Ind. Microbiol. Biotechnol. 34: 339–347.

    Article  CAS  Google Scholar 

  35. Chi, Z., C. Ma, P. Wang, and H. F. Li (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresource Technol. 98: 534–538.

    Article  CAS  Google Scholar 

  36. Chi, Z. and S. Zhao (2003) Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast. Enz. Microb. Technol. 33: 206–221.

    Article  CAS  Google Scholar 

  37. Groudieva, T., M. Kambourova, H. Yusef, M. Royter, R. Grote, H. Trinks, and G. Antranikian (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8: 475–488.

    Article  CAS  Google Scholar 

  38. Zardetto, S. (2005) Effect of modified atmosphere packaging at abuse temperature on the growth of Penicillium aurantiogriseum isolated from fresh filled pasta. Food Microbiol. 22: 367–371.

    Article  Google Scholar 

  39. Sakurai, Y., H. Inoue, W. Nishii, T. Takahashi, Y. Lino, M. Yamamoto, and K. Takahashi (2009) Purification and characterization of a major collagenase from Streptomyces parvulus. Biosci. Biotechnol. Biochem. 73: 21–28.

    Article  CAS  Google Scholar 

  40. Tsuruoka, N., T. Nakayama, M. Ashida, H. Hemmi, M. Nakao, H. Minakata, H. Oyama, K. Oda, and T. Nishino (2003) Collagenolytic serine-carboxyl proteinase from Alicyclobacillus sendaiensis strain NTAP-1: Purification, characterization, gene cloning, and heterologous expression. Appl. Environ. Microb. 69: 162–169.

    Article  CAS  Google Scholar 

  41. Petrova, D., A. Derekova, and S. Vlahov (2006) Purification and properties of individual collagenases from Streptomyces sp. strain 3B. Folia Microbiol. 51: 93–98.

    Article  CAS  Google Scholar 

  42. Viana, D. A., C. A. Lima, R. P. Neves, C. S. Mota, K. A. Moreira, J. L. Lima-Filho, M. T. H. Cavalcanti, A. Converti, and A. L. F. Porto (2010) Production and stability of protease from Candida buinensis. Appl. Biochem. Biotechnol. 162: 830–842.

    Article  CAS  Google Scholar 

  43. Moreno, J. M., M. Arroyo, M. J. Hernáiz, and J. V. Sinisterra (1997) Covalent immobilization of pure isoenzymes from lipase of Candida rugosa. Enz. Microb. Technol. 21: 552–558.

    Article  CAS  Google Scholar 

  44. Porto, T. S., C. S. Porto, M. T. H. Cavalcanti, J. L. Lima Filho, P. Perego, A. L. F. Porto, A. Converti, and A. Pessoa Jr (2006) Kinetic and thermodynamic investigation on ascorbate oxidase activity and stability of a Cucurbita maxima extract. Biotechnol. Progr. 22: 1637–1642.

    CAS  Google Scholar 

  45. Ramírez-Zavala, B., Y. Mercado-Flores, C. Hernández-Rodríguez, and L. Villa-Tanaca (2004) Purification and characterization of a lysine aminopeptidase from Kluveromyces marxianus. FEMS Microbiol. Lett. 235: 369–375.

    Google Scholar 

  46. Ma, C., X. Ni, Z. Chi, L. Ma, and L. Gao (2007) Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources. Mar. Biotechnol. 9: 343–351.

    Article  CAS  Google Scholar 

  47. De Vicente, J. I., D. De Arringa, P. Del Valle, J. Soler, and A. P. Eslava (1996) Purification and characterization of an extracellu lar aspartate protease from Phycomyces blakesleeanus. Fungal Genet. Biol. 20: 115–124.

    Article  Google Scholar 

  48. Okamoto, D. N., M. Y. Kondo, J. A. N. Santos, S. Nakajima, K. Hiraga, K. Oda, M. A. Juliano, L. Juliano, and I. E. Gouvea (2009) Kinetic analysis of salting activation of a subtilisin-like halophilic protease. Biochim. Biophys. Acta 1794: 367–373.

    CAS  Google Scholar 

  49. Fusek, M., X. L. Lin, and J. Tang (1990) Enzymic properties of thermopsin. J. Biol. Chem. 265: 1496–1501.

    CAS  Google Scholar 

  50. Rossi, F. G., M. Z. Ribeiro, A. Converti, M. Vitolo, and A. Pessoa Jr. (2003) Kinetic and thermodynamic aspects of glucose-6-phosphate dehydrogenase activity and synthesis. Enz. Microb. Technol. 32: 107–113.

    Article  CAS  Google Scholar 

  51. Ikegaya, K., S. Sugio, K. Murakami, and K. Yamanouchi (2003) Kinetic analysis of enhanced thermal stability of an alkaline protease with engineered twin disulfide bridges and calcium-dependent stability. Biotechnol. Bioeng. 81: 187–192.

    Article  CAS  Google Scholar 

  52. Villa, A., L. Zecca, P. Fusi, S. Colombo, G. Tedeschi, and P. Tortora (1993) Structural features responsible for kinetic thermal stability of a carboxipeptidase from the archaebacterium Sulfolobus solfataricus. Biochem. J. 295: 827–831.

    CAS  Google Scholar 

  53. Kristjansson, M. M. and J. E. Kinsella (1990) Alkaline serine proteinase from Thermomonospora fusca YX. Biochem. J. 270: 51–55.

    CAS  Google Scholar 

  54. Nagano, H. and K. A. To (1999) Purification of collagenase and specificity of its related enzyme from Bacillus subtilis FS-2. Biosci. Biotechnol. Biochem. 63: 181–183.

    Article  Google Scholar 

  55. Okamoto, M., Y. Yonejima, Y. Tsujimoto, Y. Suzuki, and K. Watanabe (2001) A thermostable collagenolytic protease with a very large molecular mass produced by thermophilic Bacillus sp. strain MO-1. Appl. Microbiol. Biotechnol. 57: 103–108.

    Article  CAS  Google Scholar 

  56. Uesugi, Y., J. Arima, H. Usuki, M. Iwabuchi, and T. Hatanaka (2008) Two bacterial collagenolytic serine proteases have different topological specificities. Biochim. Biophys. Acta 1784: 716–726.

    CAS  Google Scholar 

  57. Sukhosyrova, E. A., Z. K. Nikitina, M. B. Yakovleva, E. V. Veshchikova, and V. A. Bykov (2003) Characteristics of collagenolytic enzymes secreted by deuteromycete fungi Aspergillus flavus. B. Exp. Biol. Med. 135: 447–451.

    Article  CAS  Google Scholar 

  58. Wu, Q., C. Li, C. Li, H. Chen, and L. Shuliang (2010) Purification and characterization of a novel collagenase from Bacillus pumilus Col-J. Appl. Biochem. Biotechnol. 160: 129–139.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana L. F. Porto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, C.A., Filho, J.L.L., Neto, B.B. et al. Production and characterization of a collagenolytic serine proteinase by Penicillium aurantiogriseum URM 4622: A factorial study. Biotechnol Bioproc E 16, 549–560 (2011). https://doi.org/10.1007/s12257-010-0247-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0247-0

Keywords

Navigation