Skip to main content
Log in

Effect of lipopolysaccharide mutation on oxygenation of linoleic acid by recombinant Escherichia coli expressing CYP102A2 of Bacillus subtilis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The effects of cell wall mutation on the oxygenation of linoleic acid (M.W. 280) by recombinant Escherichia coli expressing the CYP102A2 gene encoding self-sufficient P450 monooxygenase of Bacillus subtilis was investigated. After the CYP102A2 gene was heterologously expressed in E. coli W3110 and its isogenic lipopolysaccharide (LPS) structural mutant strains, their whole-cell biotransformation activities were compared. The mutants used in this study had previously been designated as MLK53, MLK1067, and MLK986. These strains carry one or two defined mutations in the secondary acyl fatty acids of the LPS lipid A constituent. The CYP102A2 gene was overexpressed in both wild type E. coli W3110 and its mutant strains, with the specific activity ranging from 1.7 to 2.1 U/mg protein. Interestingly, the whole-cell biotransformation activity of those recombinant biocatalysts differed significantly. Indeed, MLK986 possessing the tetraacylated LPS showed a higher oxygenation activity of linoleic acid than those in wild type or other mutant strains having hexa- or penta-acylated LPSs. These results suggest that the biotransformation efficiency of E. coli-based biocatalysts, especially for medium- to large-sized lipophilic organic substrates, can be enhanced via engineering their LPS, which is known to function as a formidable barrier for hydrophobic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blank, L. M., B. E. Ebert, K. Buehler, and B. Buhler (2010) Redox biocatalysis and metabolism: Molecular mechanisms and metabolic network analysis. Antioxid. Redox Signal. 13: 349–394.

    Article  CAS  Google Scholar 

  2. Munro, A. W., H. M. Girvan, and K. J. McLean (2007) Variations on a (t)heme — novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat. Prod. Rep. 24: 585–609.

    Article  CAS  Google Scholar 

  3. Hannemann, F., A. Bichet, K. M. Ewen, and R. Bernhardt (2007) Cytochrome P450 systems — biological variations of electron transport chains. Biochim. Biophys. Acta-Gen. Subj. 1770: 330–344.

    Article  CAS  Google Scholar 

  4. Hilker, B. L., H. Fukushige, C. Hou, and D. Hildebrand (2008) Comparison of Bacillus monooxygenase genes for unique fatty acid production. Prog. Lipid Res. 47: 1–14.

    Article  CAS  Google Scholar 

  5. Dietrich, M., S. Eiben, C. Asta, T. A. Do, J. Pleiss, and V. B. Urlacher (2008) Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Appl. Microbiol. Biotechnol. 79: 931–940.

    Article  CAS  Google Scholar 

  6. Lentz, O., V. Urlacher, and R. D. Schmid (2004) Substrate specificity of native and mutated cytochrome P450 (CYP102A3) from Bacillus subtilis. J. Biotechnol. 108: 41–49.

    Article  CAS  Google Scholar 

  7. Capdevila, J. H., S. Wei, C. Helvig, J. R. Falck, Y. Belosludtsev, G. Truan, S. E. Graham-Lorence, and J. A. Peterson (1996) The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450 BM-3. J. Biol. Chem. 271: 22663–22671.

    Article  CAS  Google Scholar 

  8. Lentz, O., A. Feenstra, T. Habicher, B. Hauer, R. D. Schmid, and V. B. Urlacher (2006) Altering the regioselectivity of cytochrome P450CYP102A3 of Bacillus subtilis by using a new versatile assay system. ChemBioChem. 7: 345–350.

    Article  CAS  Google Scholar 

  9. Whitehouse, C. J. C., S. G. Bell, H. G. Tufton, R. J. P. Kenny, L. C. I. Ogilvie, and L. L. Wong (2008) Evolved CYP102A1 (P450(BM3)) variants oxidise a range of non-natural substrates and offer new selectivity options. Chem. Commun. 966–968.

  10. Glieder, A., E. T. Farinas, and F. H. Arnold (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20: 1135–1139.

    Article  CAS  Google Scholar 

  11. Peters, M. W., P. Meinhold, A. Glieder, and F. H. Arnold (2003) Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J. Am. Chem. Soc. 125: 13442–13450.

    Article  CAS  Google Scholar 

  12. Park, J. B. (2007) Oxygenase-based whole-cell biocatalysis in organic synthesis. J. Microbiol. Biotechnol. 17: 379–392.

    CAS  Google Scholar 

  13. Doo, E. H., W. H. Lee, H. S. Seo, J. H. Seo, and J. B. Park (2009) Productivity of cyclohexanone oxidation of the recombinant Corynebacterium glutamicum expressing chnB of Acinetobacter calcoaceticus. J. Biotechnol. 142: 164–169.

    Article  CAS  Google Scholar 

  14. Pandey, B. P., C. Roh, K. Y. Choi, N. Lee, E. J. Kim, S. Ko, T. Kim, H. Yun, and B. G. Kim (2010) Regioselective hydroxylation of daidzein using P450 (CYP105D7) from Streptomyces avermitilis MA4680. Biotechnol. Bioeng. 105: 697–704.

    CAS  Google Scholar 

  15. Bae, J. -W., E.-H. Doo, S. -H. Shin, S. -G. Lee, Y. -J. Jeong, J. -B. Park, and S. Park (2009) Development of a recombinant Escherichia coli-based biocatalyst to enable high styrene epoxidation activity with high product yield on energy source. Proc. Biochem. 45: 147–152.

    Article  Google Scholar 

  16. Julsing, M. K., S. Cornelissen, B. Buhler, and A. Schmid (2008) Heme-iron oxygenases: Powerful industrial biocatalysts?. Cur. Opin. Chem. Biol. 12: 177–186.

    Article  CAS  Google Scholar 

  17. Rosic, N. N. (2009) Versatile capacity of shuffled cytochrome P450s for dye production. Appl. Microbiol. Biotechnol. 82: 203–210.

    Article  CAS  Google Scholar 

  18. Schneider, S., M. G. Wubbolts, D. Sanglard, and B. Witholt (1998) Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for in vivo application of cytochrome P-450(BM-3) monooxygenase. Appl. Environ. Microbiol. 64: 3784–3790.

    CAS  Google Scholar 

  19. Ni, Y. and R. R. Chen (2005) Lipoprotein mutation accelerates substrate permeability-limited toluene dioxygenase-catalyzed reaction. Biotechnol. Prog. 21: 799–805.

    Article  CAS  Google Scholar 

  20. Riesenberg, D. (1991) High-cell-density cultivation of Escherichia coli. Cur. Opin. Biotechnol. 2: 380–384.

    Article  CAS  Google Scholar 

  21. Budde, M., S. C. Maurer, R. D. Schmid, and V. B. Urlacher (2004) Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis. Appl. Microbiol. Biotechnol. 66: 180–186.

    Article  CAS  Google Scholar 

  22. Sambrook, J. and R. W. Russell (2001) Molecular cloning: A laboratory manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring, NY.

    Google Scholar 

  23. Neidhardt, F. C. (1996) Escherichia coli and Salmonella. ASM Press, Washington D.C.

    Google Scholar 

  24. Vaara, M. and M. Nurminen (1999) Outer membrane permeability barrier in Escherichia coli mutants that are defective in the late acyltransferases of lipid A biosynthesis. Antimicrob. Agents Chemother. 43: 1459–1462.

    CAS  Google Scholar 

  25. Vorachek-Warren, M. K., S. Ramirez, R. J. Cotter, and C. R. H. Raetz (2002) A triple mutant of Escherichia coli lacking secondary acyl chains on lipid A. J. Biol. Chem. 277: 14194–14205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Byung Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, NR., Yoon, J.W. & Park, JB. Effect of lipopolysaccharide mutation on oxygenation of linoleic acid by recombinant Escherichia coli expressing CYP102A2 of Bacillus subtilis . Biotechnol Bioproc E 16, 7–12 (2011). https://doi.org/10.1007/s12257-010-0243-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0243-4

Keywords

Navigation