Skip to main content
Log in

Erucic acid production using porcine pancreas lipase: Enhancement by mixed surfactants

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Application of mixed surfactants coupled with statistical optimization in lipase catalyzed oil hydrolysis is presented for the first time in this study. Selective hydrolysis of brown mustard oil to erucic acid by porcine pancreas lipase was enhanced by mixed surfactants comprising of an oil-soluble nonionic surfactant (Span 80) and a watersoluble nonionic surfactant (Tween 80). The production of erucic acid was maximized using statistically designed experiments and subsequent analysis of their result by response surface methodology. The most significant variables were enzyme concentration and concentration of Tween 80. Small changes in pH and concentration of Span 80 also produced a significant change in the production of erucic acid. Temperature and speed of agitation were insignificant variables and were fixed at 35oC and 900 rpm, respectively. Under these conditions, the optimal combination of other variables were pH 9.65, 2.13 mg/g enzyme in oil, 9.8 × 10−3 M Span 80 (in oil), and 4 × 10−3 M Tween 80 (in buffer). These conditions led to formation of 99.69% of the total erucic acid in 1.25 h. Interaction of enzyme concentration with pH significantly affected erucic acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazza, G. (1998) Biochemical and Processing Aspects. CRC Press, Florida, USA.

    Google Scholar 

  2. West, L., I. Tsui, B. Balch, K. Mayer, and P. J. Huth (2002) Determination and health implication of the erucic acid content of broccoli florets, sprouts, and seeds. J. Food Sci. 67: 2641–2643.

    Article  CAS  Google Scholar 

  3. Gunstone, F. and R. J. Hamilton (2001) Oleochemical Manufacture and Application. CRC Press, Florida, USA.

    Google Scholar 

  4. Riegel, E. R. and J. A. Kent (2003) Riegel’s Handbook of Industrial Chemistry. 10th ed., Springer, NY, USA.

    Google Scholar 

  5. Vargas-Lopez, J. M., D. Wiesenborn, K. Tostenson, and L. Cihacek (1999) Processing of crambe for oil and isolation of erucic acid. J. Am. Oil Chem. Soc. 76: 801–809.

    Article  CAS  Google Scholar 

  6. Brady, C., L. Metcalfe, D. Slaboszewski, and D. Frank (1988) Lipase immobilized on hydrophobic, microporous support for the hydrolysis of fats. J. Am. Oil Chem. Soc. 65: 917–921.

    Article  CAS  Google Scholar 

  7. McNeill, G. P. and P. E. Sonnet (1995) Isolation of erucic acid from rapeseed oil by lipase-catalyzed hydrolysis. J. Am. Oil Chem. Soc. 72: 213–218.

    Article  CAS  Google Scholar 

  8. Brockerhoff, H. (1973) A model of pancreatic lipase and orientation of enzyme at interfaces. Chem. Phys. Lipids 10: 215–222.

    Article  CAS  Google Scholar 

  9. Mukherjee, K. D. and I. Kiewitt (1996) Enrichment of very long chain mono-unsaturated fatty acids by lipase-catalysed hydrolysis and transesterification. Appl. Microbiol. Biotechnol. 44: 557–562.

    Article  CAS  Google Scholar 

  10. Birner-Grünberger, R., H. Scholze, K. Faber, and A. Hermetter (2004) Identification of various lipolytic enzymes in crude porcine pancreatic lipase preparations using covalent fluorescent inhibitors. Biotechnol. Bioeng. 85: 147–154.

    Article  Google Scholar 

  11. Pan, T., Z. Wang, J. -H. Xu, Z. Wu, and H. Qi (2010) Stripping of nonionic surfactants from the coacervate phase of cloud point system for lipase separation by Winsor II microemulsion extraction with the direct addition of alcohols. Proc. Biochem. 45: 771–776.

    Article  CAS  Google Scholar 

  12. Tinoi, R. (1999) Isolation of Erucic Acid from Mustard Seed Oil by Candida rugosa lipase. M. S. Thesis. Chiang Mai University, Chiang Mai, Thailand.

    Google Scholar 

  13. Borgström, B. (1977) The action of bile salts and other detergents on pancreatic lipase and the interaction with colipase. Biochim. Biophys. Acta 488: 381–391.

    Google Scholar 

  14. Borgström, B. (1976) Binding of pancreatic colipase to interfaces effects of detergents. FEBS Lett. 71: 201–204.

    Article  Google Scholar 

  15. Borgström, B. and J. Donner (1976) Interactions of pancreatic lipase with bile salts and dodecyl sulfate. J. Lipid Res. 17: 491–497.

    Google Scholar 

  16. Gargouri, Y., R. Julien, A. G. Bois, R. Verger, and L. Sarda (1983) Studies on the detergent inhibition of pancreatic lipase activity. J. Lipid Res. 24: 1336–1342.

    CAS  Google Scholar 

  17. Antonov, V. K., V. L. Dyakov, A. A. Mishin, and T. V. Rotanov (1988) Catalytic activity and association of pancreatic lipase. Biochimie 70: 1235–1244.

    Article  CAS  Google Scholar 

  18. Verger, R., L. Sarda, and P. Desnuelle (1970) The sulfhydryl groups of pancreatic lipase. Biochim. Biophys. Acta 207: 377–379.

    CAS  Google Scholar 

  19. Potumarthi, R., C. Subhakar, A. Pavani, and A. Jetty (2008) Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods. Bioresour. Technol. 99: 1776–1786.

    Article  CAS  Google Scholar 

  20. Montgomery, D. C. (2001) Design and Analysis of Experiments. 5th ed., John Wiley and Sons, NY, USA.

    Google Scholar 

  21. Ognjanović, N., D. Bezbradica, and Z. Kneževi (2008) Optimization of the production of biodiesel by a commercial immobilized lipase in a solvent-free system using a response surface methodology. J. Serb. Chem. Soc. 73: 147–156.

    Article  Google Scholar 

  22. Can, A. and B. Özçelik (2005) Enrichment of hazelnut oil with long-chain n-3 PUFA by lipase-catalyzed acidolysis: Optimization by response surface methodology. J. Am. Oil Chem. Soc. 82: 27–32.

    Article  CAS  Google Scholar 

  23. Shieh, C. J., H. F. Liao, and C. C. Lee (2003) Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresour. Technol. 88: 103–106.

    Article  CAS  Google Scholar 

  24. Kiran, K. R., C. V. R. Babu, and S. Divakar (2001) Thermostability of porcine pancreas lipase in non-aqueous media. Proc. Biochem. 36: 885–892.

    Article  CAS  Google Scholar 

  25. Uhlig, H. and E. M. Linsmaier-Bednar (1998) Industrial Enzymes and Their Applications. Wiley-IEEE Press, NY, USA.

    Google Scholar 

  26. Straathof, A. J. J. (2003) Enzymatic catalysis via liquid-liquid interfaces. Biotechnol. Bioeng. 83: 371–375.

    Article  CAS  Google Scholar 

  27. Puthli, M. S., V. K. Rathode, and A. B. Pandit (2006) Enzymatic hydrolysis of castor oil: Process intensification studies. Biochem. Eng. J. 31: 31–41.

    Article  CAS  Google Scholar 

  28. Kaimal, T. N. B., R. B. N. Prasad, and T. C. Rao (1993) A novel lipase hydrolysis method to concentrate erucic acid glycerides in cruciferae oils. Biotechnol. Lett. 15: 353–356.

    Article  CAS  Google Scholar 

  29. Goswami, D., R. Sen, J. K. Basu, and S. De (2010) Surfactant enhanced ricinoleic acid production using Candida rugosa lipase. Bioresour. Technol. 101: 6–13.

    Article  CAS  Google Scholar 

  30. O’Fallon, J. V., J. R. Busboom, M. L. Nelson, and C. T. Gaskins (2007) A direct method for fatty acid methyl ester (FAME) synthesis: Application to wet meat tissues, oils and feedstuffs. J. Anim. Sci. 85: 1511–1521.

    Article  Google Scholar 

  31. Sen, R. and T. Swaminathan (2004) Response Surface Modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochem. Eng. J. 21: 141–148.

    Article  CAS  Google Scholar 

  32. Tang, X. -J., G. -Q. He, Q. -H. Chen, X. -Y. Zhang, and M. A. M. Ali (2004) Medium optimization for the production of thermal stable β-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology. Bioresour. Technol. 93: 175–181.

    Article  CAS  Google Scholar 

  33. Chen, X. -C., J. -X. Bai, J. -M. Cao, Z. -J. Li, J. Xiong, L. Zhang, Y. Hong, and H. -J. Ying (2009) Medium optimization for the production of cyclic adenosine 3′,5′-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Bioresour. Technol. 100: 919–924.

    Article  CAS  Google Scholar 

  34. Clint, J. H. (1992) Surfactant Aggregation. Blackie & Sons Ltd., Glasgow, UK.

    Google Scholar 

  35. Rosen, M. J. (1992) In: P. M. Holland and D. N. Rubingh (eds.). Mixed Surfactant Systems. American Chemical Society, Washington D. C, USA.

    Google Scholar 

  36. Scamehorn, J. F. (1986) Phenomena in Mixed Surfactant Systems. American Chemical Society, Washington D. C. USA.

    Book  Google Scholar 

  37. Huibers, P. D. T. and D. O. Shah (1996) In: V. Pillai and D. O. Shah (eds.). Dynamic Properties of Interfaces and Association Structures. AOCS Press, Champaign, USA.

    Google Scholar 

  38. Rosen, M. J. (1989) Surfactants and Interfacial Phenomena. 2nd ed., John Wiley and Sons, NY, USA.

    Google Scholar 

  39. Shinoda, K. and S. Friberg (1986) Emulsions and Solubilization. John Wiley and Sons, NY, USA.

    Google Scholar 

  40. Johnson, R. W. and E. Fritz (1989) Fatty Acids in Industry: Processes, Derivatives, Applications. Marcel Dekker Inc., NY, USA.

    Google Scholar 

  41. Huibers, P. D. T. and D. O. Shah (1997) Evidence for synergism in nonionic surfactant mixtures: Enhancement of solubilization in water-in-oil microemulsions. Langmuir 13: 5762–5765.

    Article  CAS  Google Scholar 

  42. Klibanov, A. M. (1983) Stabilization of enzymes against thermal inactivation. Adv. Appl. Microbiol. 29: 1–28.

    Article  CAS  Google Scholar 

  43. Tiwari, A. and R. Bhat (2006) Stabilization of yeast hexokinase A by polyol osmolytes: Correlation with the physicochemical properties of aqueous solutions. Biophys. Chem. 124: 90–99.

    Article  CAS  Google Scholar 

  44. Timasheff, S. N. (2002) Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc. Nat. Acad. Sci. USA 99: 9721–9726.

    Article  CAS  Google Scholar 

  45. Xie, G. and S. N. Timasheff (1997) Temperature dependence of the preferential interactions of ribonuclease A in aqueous cosolvent systems: Thermodynamic analysis. Protein Sci. 6: 222–232.

    Article  CAS  Google Scholar 

  46. Boyd, J., C. Parkinson, and P. Sherman (1972) Factors affecting emulsion stability, and the HLB concept. J. Colloid Interface Sci. 41: 359–370.

    Article  CAS  Google Scholar 

  47. van Kuiken, B. A. and W. D. Behnke (1994) The activation of porcine pancreas lipase by unsaturated fatty acids. Biochim. Biophys. Acta 1214: 148–160.

    Google Scholar 

  48. Velev, O. D., T. D. Gurkov, S. K. Chakarova, B. I. Dimitrova, I. B. Ivanova, and R. P. Borwankar (1994) Experimental investigations on model emulsion systems stabilized with non-ionic surfactant blends. Colloids Surf. A: Physicochem. Eng. Asp. 83: 43–55.

    Article  CAS  Google Scholar 

  49. Tadros, T. F. and B. Vincent (1983) Emulsion stability. pp. 130–278. In: P. Becher (ed.), Encyclopedia of Emulsion Technology. Marcel Dekker Inc., NY, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirshendu De.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goswami, D., Basu, J.K. & De, S. Erucic acid production using porcine pancreas lipase: Enhancement by mixed surfactants. Biotechnol Bioproc E 16, 327–336 (2011). https://doi.org/10.1007/s12257-010-0193-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0193-x

Keywords

Navigation