Characterization of Leuconostoc citreum plasmid pCB18 and development of broad host range shuttle vector for lactic acid bacteria


Leuconostoc spp. are important lactic acid bacteria for the fermentation of foods, and they are regarded as potential food-grade hosts for protein expression. The aim of this study was to develop a broad-host-range shuttle vector for the genetic study and biotechnological evaluation of this genus by using a Leuconostoc-derived plasmid. A cryptic plasmid, pCB18, was obtained from Leuconostoc citreum CBNU75; its nucleotide sequence was 1,821 bp long and had only 39.2% G+C content. A Leuconostoc-Escherichia coli shuttle vector, pLeuCM, was constructed by combining pCB18 and pEK104, and it was successfully replicated in both E. coli and L. citreum. The shuttle vector was replicated by following the rolling circle replication mechanism, and it showed over 80% segregational stability after 100 generations of cell division. The β-galactosidase gene of Lactobacillus plantarum was subcloned into pLeuCM, and this construct was successfully expressed in L. citreum. The pLeuCM plasmid was replicated in L. citreum, L. mesenteroides, Lb. plantarum, Lb. reuteri, Lactococcus lactis, Streptococcus thermophilus, Weissella confusa, and Oenococcus oeni. These results demonstrate that pLeuCM can be used as a potential gene-delivery tool for many lactic acid bacteria.

This is a preview of subscription content, access via your institution.


  1. 1.

    Cogan, T. M. and K. N. Jordan (1994) Metabolism of Leuconostoc bacteria. J. Dairy Sci. 77: 2704–2717.

    CAS  Article  Google Scholar 

  2. 2.

    Eom, H. J., D. M. Seo, and N. S. Han (2007) Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 10: 61–67.

    Article  Google Scholar 

  3. 3.

    Johanningsmeier, S. D., H. P. Fleming, and F. Breidt (2004) Malolactic activity of lactic acid bacteria during sauerkraut fermentation. J. Food Sci. 69: 222–227.

    Article  Google Scholar 

  4. 4.

    Hemme, D. and F. S. Catherine (2004) Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 14: 467–494.

    Article  Google Scholar 

  5. 5.

    Davidson, B. E., N. Kordias, M. Dobos, and A. J. Hillier (1996) Genomic organization of lactic acid bacteria. Antonie Van Leeuwenhoek. 70: 161–183.

    CAS  Article  Google Scholar 

  6. 6.

    Shareck, J., Y. Choi, B. Lee, and C. B. Miguez (2004) Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: Their characteristics and potential applications in biotechnology. Crit. Rev. Biotechnol. 24: 155–208.

    CAS  Article  Google Scholar 

  7. 7.

    Biet, F., Y. Cenatiempo, and C. Fremoux (1999) Characterization of pFR18, a small cryptic plasmid from Leuconostoc mesenteroides ssp. mesenteroides FR52, and its use as a food-grade vector. FEMS Microbiol. Lett. 179: 375–383.

    CAS  Article  Google Scholar 

  8. 8.

    Biet, F., Y. Cenatiempo, and C. Fremoux (2002) Identification of a replicon from pTXL1, a small cryptic plasmid from Leuconostoc mesenteroides subsp. mesenteroides Y110, and development of a food-grade vector. Appl. Environ. Microbiol. 68: 6451–6456.

    CAS  Article  Google Scholar 

  9. 9.

    Coffey, A., A. Harrington, K. Kearney, C. Daly, and G. Fitzgerald (1994) Nucleotide organization of the small broad-host-range plasmid pCI411 from Leuconostoc lactis 533. Microbiol. 140: 2263–2269.

    CAS  Article  Google Scholar 

  10. 10.

    Kleerebezem, M., M. M. Beerthuyzen, E. E. Vaughan, W. M. de Vos, and O. P. Kuipers (1997) Controlled gene expression systems for lactic acid bacteria: Transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus sp. Appl. Environ. Microbiol. 63: 4581–4584.

    CAS  Google Scholar 

  11. 11.

    Sambrook, J., E. Fritsch, and T. Maniatis (1989) Molecular Cloning: A Laboratory Manual. 2nd ed., In: N. Irwin, N. Ford, C. Nolan, M. Ferguson, and M. Ochler (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  12. 12.

    Park, M. S., K. H. Lee, and G. E. Ji (1997) Isolation and characterization of two plasmids from Bifidobacterium longum. Lett. Appl. Microbiol. 25: 5–7.

    CAS  Article  Google Scholar 

  13. 13.

    Eom, H. J., J. M. Park, M. J. Seo, M. D. Kim, and N. S. Han (2008) Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene. J. Ind. Microbiol. Biotechnol. 35: 953–959.

    CAS  Article  Google Scholar 

  14. 14.

    Lin, C. F. and T. C. Chung (1999) Cloning of erytheromycinresistance determinants and replication origins from indigenous plasmids of Lactobacillus reuteri for potential use in construction of cloning vectors. Plasmid 42: 31–41.

    CAS  Article  Google Scholar 

  15. 15.

    Beltramo, C., M. Oraby, G. Bourel, D. Garmyn, and J. Guzzo (2004) New vector, pGID052, for genetic transfer in Oenococcus oeni. FEMS Microbiol. Lett. 236: 53–60.

    CAS  Google Scholar 

  16. 16.

    Leenhouts, K. J., B. Tolner, S. Bron, J. Kok, G. Venema and J. F. Seegers (1991) Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWVO1. Plasmid 26: 55–66.

    CAS  Article  Google Scholar 

  17. 17.

    Park, M. S., D. W. Shin, K. H. Lee, and G. E. Ji (1999) Sequence analysis of plasmid pKJ50 from Bifidobacterium longum. Microbiol. 145: 585–592.

    CAS  Article  Google Scholar 

  18. 18.

    David, S., H. Stevens, M. van Riel, G. Simons, and W. M. de Vos (1992) Leuconostoc lactis β-galactosidase is encoded by two overlapping genes. J. Bacteriol. 174: 4475–4481.

    CAS  Google Scholar 

  19. 19.

    Kim, J. F., H. Jeong, J. S. Lee, S. H. Choi, M. Ha, C. G. Hur, J. S. Kim, S. Lee, H. S. Park, Y. H. Park, and T. K. Oh (2008) Com plete genome sequence of Leuconostoc citreum KM20. J. Bacteriol. 190: 3093–3094.

    CAS  Article  Google Scholar 

  20. 20.

    Park, J., M. Lee, J. Jung, and J. Kim (2005) pIH01, a small cryptic plasmid from Leuconostoc citreum IH3. Plasmid 54: 184–189.

    CAS  Article  Google Scholar 

  21. 21.

    Mayo, B., B. Gonzalez, P. Arca, and J. E. Suarez (1994) Cloning and expression of the plasmid encoded beta-D-galactosidase gene from a Lactobacillus plantarum strain of dairy origin. FEMS Microbiol. Lett. 122: 145–152.

    CAS  Article  Google Scholar 

  22. 22.

    Smith, M. A. and M. J. Bidochka (1998) Bacterial fitness and plasmid loss: The importance of culture conditions and plasmid size. Can. J. Microbiol. 44: 351–355.

    CAS  Article  Google Scholar 

  23. 23.

    Pillidge, C. J. and L. E. Pearce (1991) Expression of a beta-galactosidase gene from Clostridium acetobutylicum in Lactococcus lactis subsp. lactis. J. Appl. Bacteriol. 71: 78–85.

    CAS  Google Scholar 

  24. 24.

    Han, T. U., D. Jeong, S. H. Cho, J. Lee, D. K. Chung, and H. J. Lee (2005) Construction of a lactococcal shuttle/expression vector containing a β-galactosidase gene as a screening marker. Kor. J. Microbiol. Biotechnol. 33: 241–247.

    CAS  Google Scholar 

  25. 25.

    Hammes, W. P. and R. F. Vogel (1995) The genus Lactobacillus. pp. 19–54. In: B. J. B. Wood & W. H. Holzapfel (eds.). The lactic acid bacteria: The genera of lactic acid bacteria. Blackie Academic & Professional, London, UK.

    Google Scholar 

  26. 26.

    Björkroth, K. J., U. Schillinger, R. Geisen, N. Weiss, B. Hoste, W. H. Holzapfel, H. J. Korkeala, and P. Vandamme (2002) Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int. J. Syst. Evol. Microbiol. 52: 141–148.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Nam Soo Han.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eom, HJ., Cho, S.K., Park, M.S. et al. Characterization of Leuconostoc citreum plasmid pCB18 and development of broad host range shuttle vector for lactic acid bacteria. Biotechnol Bioproc E 15, 946–952 (2010).

Download citation


  • Leuconostoc citreum
  • lactic acid bacteria
  • shuttle vector
  • plasmid
  • protein expression