Skip to main content
Log in

Improvement of tautomycin production in Streptomyces spiroverticillatus by feeding glucose and maleic anhydride

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Optimization of the feeding process for tautomycin production by Streptomyces spiroverticillatus was performed using glucose and/or maleic anhydride. The feeding of glucose was based on the reducing sugar content (lower than 8 g/L) at a cultivation time of 40 h. After addition of 2% (w/v) glucose, the biomass increased from 21 to 28 g/L, and that of tautomycin from 572.06 to 837.6 mg/L. Moreover, 1723.1 mg/L of tautomycin (increased by 201.21%) was obtained by feeding 0.2% (w/v) maleic anhydride solution at a pH between 4 and 7 in the broth. For the experiments in the 15 L fermentor, tautomycin content reached its highest level (1714.7 mg/L), which was 199.7% higher than that of control by feeding both glucose and maleic anhydride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, X. C., T. Kihara, H. Kusakabe, J. Magae, Y. Kobayashi, R. P. Fang, Z. F. Ni, Y. C. Shen, K. Ko, I. Yamaguchi, and K. Isono (1987) A new antibiotic, tautomycin. J. Antibiot. 40: 907–909.

    CAS  Google Scholar 

  2. Cheng, X. C., M. Ubukata, and K. Isono (1990) The structure of tautomycin, a dialkylmaleicanhydride antibiotic. J. Antibiot. 43: 809–819.

    CAS  Google Scholar 

  3. Chen, X. L., Y. G. Zheng, and Y. C. Shen (2007) Natural products with maleic anhydride structure: Nonadrides, tautomycin, chaetomellic anhydride, and other compounds. Chem. Rev. 107: 1777–1830.

    Article  CAS  Google Scholar 

  4. Favre, B., P. Turowski, and B. A. Hemmings (1997) Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J. Bio. Chem. 272: 13856–13863.

    Article  CAS  Google Scholar 

  5. Kawamura, T., S. I. Matsuzawa, Y. Mizuno, K. Kikuchi, H. Oikawa, M. Oikawa, M. Ubukata, and A. Ichihara (1998) Different moieties of tautomycin involved in protein phosphatase inhibition and induction of apoptosis. Biochem. Pharmacol. 55: 995–1003.

    Article  CAS  Google Scholar 

  6. Chen, X. L., Y. G. Zheng, and Y. C. Shen (2008) Bioassay method for the quantitative determination of tautomycin in the fermentation broth with Sclerotinia sclerotiorum. J. Rapid. Meth. Autom. Microb. 16: 199–209.

    Article  CAS  Google Scholar 

  7. Oikawa, H. (2002) Synthesis of specific protein phosphatase inhibitors, tautomycin and tautomycetin toward structure-activity relationship study. Curr. Med. Chem. 9: 2033–2054.

    CAS  Google Scholar 

  8. Ubukata, M., H. Koshino, C. Yamasaki, K. I. Fujita, and K. Isono (1997) A pharmacophore model of tautomycin, an inhibitor of protein phosphatases 1 and 2A. J. Antibiot. 50: 801–807.

    CAS  Google Scholar 

  9. Magae, J., H. Osada, K. Nagai, M. Yamasaki, and K. Isono (1989) Comparison of the effect of tautomycin and phorbol ester on protein kinase C in A cell-free system. J. Antibiot. 42: 1290–1293.

    CAS  Google Scholar 

  10. Ubukata, M., X. C. Cheng, J. Uzawa, and K. Isono (1995) Biosynthesis of the dialkylmaleic anhydride-containing antibiotics, tautomycin and tautomycetin. J. Chem. Soc. 1: 2399–2404.

    Google Scholar 

  11. Li, W. L., J. H. Ju, S. R. Rajski, H. Osada, and B. Shen (2008) Characterization of the tautomycin biosynthetic gene cluster from Streptomyces spiroverticillatus unveiling new insights into dialkylmaleic anhydride and polyketide biosynthesis. J. Biol. Chem. 283: 28607–28617.

    Article  CAS  Google Scholar 

  12. Scotti, C. T., C. Vergoignan, G. Feron, and A. Durand (2001) Glucosamine measurement as indirect method for biomass estimation of Cunninghamella elegans grown in solid state cultivation conditions. Biochem. Eng. J. 7: 1–5.

    Article  CAS  Google Scholar 

  13. Tsuji, A., T. Kinoshita, and M. Hoshino (1969) Analytical chemical studies on amino sugar II. Determination of hexosamines using 3-methyl-2-benzothiazolone hydrazone hydrochloride. Chem. Pharm. Bull. 17: 1505–1510.

    CAS  Google Scholar 

  14. Miller, G. L. (1959) Use of dinitrosalicylic acid for determination of reducing sugars. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  15. Kim, J. H., K. C. Han, Y. H. Koh, Y. W. Ryu, and J. H. Seo (2002) Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J. Ind. Microbiol. Biotechnol. 29: 16–19.

    Article  CAS  Google Scholar 

  16. Kleist, S., G. Miksch, B. Hitzmann, M. Arndt, K. Friehs, and E. Flaschel (2003) Optimization of the extracellular production of a bacterial phytase with Escherichia coli by using different fed-batch fermentation strategies. Appl. Microbiol. Biotechnol. 61: 456–462.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Long Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XL., Xu, YH., Zheng, YG. et al. Improvement of tautomycin production in Streptomyces spiroverticillatus by feeding glucose and maleic anhydride. Biotechnol Bioproc E 15, 969–974 (2010). https://doi.org/10.1007/s12257-010-0087-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0087-y

Keywords

Navigation