Skip to main content
Log in

Strain development and medium optimization for fumaric acid production

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Rhizopus oryzae RUR709 mutant was isolated based on halo size from selection medium via mutagenesis with UV and γ-rays, and the production of fumaric acid in the submerged fermentation was assessed. The maximum concentration of fumaric acid was obtained using 0.5% corn steep liquor (CSL) as the nitrogen source. Organic nitrogen sources were shown to be more effective in fumaric acid production than inorganic nitrogen sources. Using optimum medium obtained by response surface methodology (RSM), the maximum concentration of fumaric acid achieved in flask culture was 26.2 g/L, which is fairly close to the 27.4 g/L predicted by the model. The highest concentration of fumaric acid in the stirred-tank reactor generated by the R. oryzae RUR709 mutant was 32.1 g/L and yield (0.45 g/g) and productivity (0.32 g/L/h) were highest at 4 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, S. Y., S. H. Hong, S. H. Lee, and S. J. Park (2004) Fermentative production of chemicals that can be used for polymer synthesis. Macromol. Biosci. 4: 157–164.

    Article  CAS  Google Scholar 

  2. Roa Engel, C. A., A. J. J. Straathof, T. W. Zijlmans, W. M. van Gulik, and L. A. M. van der Wielen (2008) Fumaric acid production by fermentation. Appl. Microbiol. Biotechnol. 78: 379–389.

    Article  CAS  Google Scholar 

  3. Robinson, W. D. and R. A. Mount (1981) Maleic anhydride, maleic acid and fumaric acid. pp. 770–793. In: M. Grayson and D. Eckroth (eds.). Kirk-Othmer Encyclopedia of Chemical Technology. 3rd ed, vol. 14. Wiley, NY, USA.

    Google Scholar 

  4. Magnuson, J. K. and L. L. Lasure (2004) Organic acid production by filamentous fungi. pp. 307–340. In: J. S. Tracz and L. Lange (eds.). Advances in fungal biotechnology for industry, agriculture and medicine. Kluwer/Plenum, NY, USA.

    Google Scholar 

  5. Goldberg, I., J. S. Rokem, and O. Pines (2006) Organic acids: Old metabolites, new themes. J. Chem. Technol. Biotechnol. 81: 1601–111.

    Article  CAS  Google Scholar 

  6. Foster, J. W. and S. A. Waksman (1939) The production of fumaric acid by molds belonging to the genus Rhizopus. J. Am. Chem. Soc. 61: 127–135.

    Article  CAS  Google Scholar 

  7. Kenealy, W., E. Zaady, J. C. DuPreez, B. Stieglitz, and I. Goldberg (1986) Biochemical aspects of fumaric acid accumulation by Rhizopus arrhizus. Appl. Environ. Microbiol. 52: 128–133.

    CAS  Google Scholar 

  8. Carta, F. S., C. R. Soccol, L. P. Ramos, and J. D. Fontana (1999) Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse. Bioresour. Technol. 68: 23–28.

    Article  CAS  Google Scholar 

  9. Zhou, Y., J. Du, and G. T. Tsao (2002) Comparison of fumaric acid production by Rhizopus oryzae using different neutralizing agents. Biopro. Biosyst. Eng. 25: 179–181.

    Article  CAS  Google Scholar 

  10. Federici, F., M. Moresi, E. Parente, M. Petruccioli, and P. Piccioni (1993) Effect of stirring rate and neutralizing agent on fumaric acid production by Rhizopus arrhizus. Ital. J. Food Sci. 4: 387–396.

    Google Scholar 

  11. Du, J., N. Cao, C. Gong, G. Tsao, and N. Yuan (1997) Fumaric acid production in airlift loop reactor with porous sparger. Appl. Biochem. Biotechnol. 63: 541–556.

    Article  Google Scholar 

  12. Kautola, H. and Y. Y. Linko (1989) Fumaric acid production from xylose by immobilized Rhizopus arrhizus cells. Appl. Microbiol. Biotechnol. 31: 448–452.

    Article  CAS  Google Scholar 

  13. Petruccioli, M. and E. Angiani (1995) Fumaric acid production by Rhizopus arrhizus immobilized in different carriers. Ann. Microbiol. Enzimol. 45: 119–128.

    CAS  Google Scholar 

  14. Cao, N., J. Du, C. Chen, C. S. Gong, and G. T. Tsao (1997) Production of fumaric acid by immobilized Rhizopus using rotary biofilm contactor. Appl. Biochem. Biotechnol. 63–65: 387–394.

    Article  Google Scholar 

  15. Shi, F., Z. Xu, and P. Cen (2006) Optimization of -polyglutamic acid production by Bacillus subtilis ZJU-7 using a surfaceresponse methodology. Biotechnol. Bioproc. Eng. 11: 251–257.

    Article  CAS  Google Scholar 

  16. Vázquez, M. and A. M. Martin (1998) Optimization of Phaffia rhodozyma continuous culture through response surface methodology. Biotechnol. Bioeng. 57: 314–320.

    Article  Google Scholar 

  17. Wasli, A. S., M. M. Salleh, S. Abd-Aziz, O. Hassan, and N. M. Mahadi (2009) Medium optimization for chitinase production from Trichoderma virens using central composite design. Biotechnol. Bioproc. Eng. 14: 781–787.

    Article  CAS  Google Scholar 

  18. Park, Y. S., S. W. Kang, J. S. Lee, S. I. Hong, and S. W. Kim (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl. Microbiol. Biotechnol. 58: 761–766.

    Article  CAS  Google Scholar 

  19. Montgomery, D. C. (1991) Response surface methods and designs. pp. 521–568. In: D. C. Montgomery (ed.). Design and analysis of experiments. John Wiley & Sons, NY, USA.

    Google Scholar 

  20. Moresi, M., E. Parente, M. Petruccioli, and F. Federici (1991) Optimization of fumaric acid production from potato flour by Rhizopus arrhizus. Appl. Microbiol. Biotechnol. 36: 35–39.

    Article  CAS  Google Scholar 

  21. Riscaldati, E., M. Moresi, F. Federici, and M. Petruccioli (2000) Direct ammonium fumarate production by Rhizopus arrhizus under phosphorous limitation. Biotechnol. Lett. 22: 1043–1047.

    Article  CAS  Google Scholar 

  22. Ling, L. B. and T. K. Ng (1989) Fermentation process for carboxylic acids. US patent 4,877,731.

  23. Cao, N., J. Du, C. S. Gong, and G. T. Tsao (1996) Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. Appl. Environ. Microbiol. 62: 2926–2931.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Wook Kim or Chulhwan Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S.W., Lee, H., Kim, D. et al. Strain development and medium optimization for fumaric acid production. Biotechnol Bioproc E 15, 761–769 (2010). https://doi.org/10.1007/s12257-010-0081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0081-4

Keywords

Navigation