Skip to main content
Log in

Effects of various inhibitors on β-galactosidase purified from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. Rittmannii isolated from Antarctica

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

β-Galactosidase purified from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. rittmannii isolated from Antarctica is a member of the GH42 family. The enzyme was not effected by various concentrations of its reaction product glucose, but was greatly inhibited by the other reaction product galactose using both substrates, ONPG and lactose. Linewever-Burk plot analysis derived from both ONPG and lactose hydrolysis results showed that galactose is a mixed-type inhibitor of the purified β-galactosidase. The enzyme was slightly activated by Mg2+ (13% at 20 mM), while inhibited at higher concentrations of Ca+2 (33% at 10 mM), Zn+2 (86% at 8 mM) and Cu+2 (87% at 4 mM). The enzyme activity was not significantly altered by the metal ion chelators EDTA and 1,10-phenanthroline up to 20 mM, indicating that this enzyme is not a metalloenzyme. 2-Mercaptoethanol and DTT were found to enhance β-galactosidase activity, while p-chloromercuribenzoic acid (PCMB) completely inhibited enzymatic activity (97% at 1 mM; 99.7% at 2 mM), indicating at least one essential Cys residue modified by the reagents in the active site of β-galactosidase. Iodoacetamide and Nethylmaleimide had little effect on the β-galactosidase. Phenylmethylsulfonyl fluoride (PMSF) inhibited the enzyme strongly (19.8% at 1 mM; 71.9% at 10 mM), also showing the participation of serine for enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henrisat, B. and A. Bairoch (1996) Updating a sequencebased classification of glycosyl hydrolases. Biochem. J. 316: 695–696.

    Google Scholar 

  2. Ohtsu, N., H. Motoshima, K. Goto, F. Tsukasaki, and H. Matsuzawa (1998). Thermostable β-galactosidase from an extreme thermophile Thermus sp. A4: Enzyme purification and characterisation, Gene Cloning and Sequencing. Biosci. Biotechnol. Biochem. 62: 1539–1545.

    Article  CAS  Google Scholar 

  3. Holmes, M. L and M. L. Dyall-Smith (2000) Sequence and expression of a halobacterial β-galactosidase. Gen. Mol. Microbiol. 36: 114–122.

    Article  CAS  Google Scholar 

  4. Sheridan, P. P. and J. E. Brenchley (2000) Characterization of a salt-tolerant family 42 β-galactosidase from a psychrophilic antarctic Planococcus isolate. Appl. Environ. Microbiol. 66: 2438–2444.

    Article  CAS  Google Scholar 

  5. Hidaka, M., S. Fushinobu, N. Ohtsu, H. Motoshima, H. Matsuzawa, H. Shoun, and T. Wakagi (2002) Trimeric crystal structure of the glycoside hydrolase family 42 β-galactosidase from Thermus termophilus A4 and the structure of its complex with galactose. J. Mol. Biol. 322: 79–91.

    Article  CAS  Google Scholar 

  6. Gul-Guven, R., K. Guven, A. Poli, and B. Nicolaus (2007) Purification and some properties of a β-galactosidase from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. rittmannii isolated from Antarctica. Enz. Microb. Technol. 40: 1570–1577.

    Article  CAS  Google Scholar 

  7. Di Lauro, B., A. Strazzulli, G. Perugino, F. La Cara, E. Bedini, M. M. Corsaro, M. Rossi, and M. Moracci (2008) Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: Identification of the active site residues. Biochim. et Biophysica Acta 1784: 292–301.

    Google Scholar 

  8. Park, A. R. and D. K. Oh (2010) Effects of galactose and glucose on the hydrolysis reaction of a thermostable β-galactosidase from Caldicellulosiruptor saccharolyticus. Appl. Microbiol. Biotechnol. 85: 1427–1435.

    Article  CAS  Google Scholar 

  9. Shaikh, F. A., J. Mullegger, S. He, and S. G. Withers (2007) Identification of the catalytic nucleophile in family 42 β-galactosidases by intermediate trapping and peptide mapping: YesZ from Bacillus subtilis. FEBS Lett. 581: 2441–2446.

    Article  CAS  Google Scholar 

  10. Portaccio, M., S. Stellato, S. Rossi, U. Bencivenga, M. S. Mohy Eldin, F. S. Gaeta, and D. G. Mita (1998) Galactose competitive inhibition of β-galactosidase (Aspergillus oryzae) immobilized on chitosan and nylon supports. Enz. Microbial Technol. 23: 101–106.

    Article  CAS  Google Scholar 

  11. van Casteren, W. H. M., M. Eimermann, L. A. M. van den Broek, J. P. Vincken, H. A. Schols, and A. G. J. Voragen (2000) Purification and characterisation of a β-galactosidase from Aspergillus aculeatus with activity towards (modified) exopolysaccharides from Lactococcus lactis subsp. cremoris B39 and B891. Carbohydrate Res. 329: 75–85.

    Article  Google Scholar 

  12. Fontes, E. A. F, F. M. L. Passos, and F. J. V. Passos (2001) A mechanistical mathematical model to predict lactose hydrolysis by β-galactosidase in a permeabilized cell mass of Kluyveromyceslactis: Validity and sensitivity analysis. Proc. Biochem. 37: 267–274.

    Article  CAS  Google Scholar 

  13. Yuan, T., P. Yang, Y. Wang, K. Meng, H. Luo, W. Zhang, N. Wu, Y. Fan, and B. Yao (2008) Heterologous expression of a gene encoding a thermostable β-galactosidase from Alicyclobacillus acidocaldarius. Biotechnol. Lett. 30: 343–348.

    Article  CAS  Google Scholar 

  14. Nicolaus, B., R. Importa, M. C. Manca, L. Lama, E. Esposito, and A. Gambacorta (1998) Alicyclobacillus from an unexplored geotermal soil in Antarctica: Mount Rittmann. Polar Biol. 19: 133–141.

    Article  Google Scholar 

  15. Cornish-Bowden, A. (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem. J. 137: 143–144.

    CAS  Google Scholar 

  16. Saboury, A. A. (2009) Enzyme inhibition and activition: A general theory. J. Iranian Chem. Soc. 6: 219–229.

    CAS  Google Scholar 

  17. Jahangiri, A., M. Mahmoudian, H. Jalalizadeh, and A. Shafiee (2004) Paraoxonase inhibition by propranolol. Iran. J. Pharmaceutical Res. 3:155–158.

    Google Scholar 

  18. Segel, I. H. (1993) Enzyme kinetics: Behaviour and anlaysis of rapid equilibrium and steady state enzyme systems. John Wiley & Sons, NY, USA.

    Google Scholar 

  19. Haider, T. and O. Husain (2007) Calcium alginate entrapped preparations of Aspergillus oryzae β-galactosidase: Its stability and applications in the hydrolysis of lactose. Inter. J. Biol. Macromol. 41: 72–80.

    Article  CAS  Google Scholar 

  20. Cowan, D. A., R. M. Daniel, A. M. Martin, and H. W. Morgan (1984) Some properties of a β-galactosidase from an extremely thermophilic bacterium. Biotechnol. Bioeng. 26: 1141–1145.

    Article  CAS  Google Scholar 

  21. Rahim, K. A. A. and B. Lee (1991) Specificity, inhibitory studies, and oligosaccharide formation by β-galactosidase from psychrotrophic Bacillus subtilis. KL88. J. Dairy Sci. 74: 1773–1778.

    Article  CAS  Google Scholar 

  22. Martinez-Bilbao, M., R. E. Holdsworth, L. A. Edwards, and R. E. Huber (1991) A highly reactive β-galactosidase (Escherichia coli) resulting from a substitution of an aspartic acid for Gly-794. J. Biol. Chem. 266: 4979–4986.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Guven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guven, R.G., Kaplan, A., Guven, K. et al. Effects of various inhibitors on β-galactosidase purified from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. Rittmannii isolated from Antarctica. Biotechnol Bioproc E 16, 114–119 (2011). https://doi.org/10.1007/s12257-010-0070-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0070-7

Keywords

Navigation