Skip to main content
Log in

Identification of two superoxide dismutases (FeSOD and NiSOD) from Streptomyces peucetius ATCC 27952

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, the whole genome of Streptomyces peucetius ATCC 27952 was analyzed and two superoxide dismutases (SODs), named sp-sod1 and sp-sod2, were identified. The sp-sod1 is a putative Fe-Zn sod that is 636 bp in length. The sp-sod2 is a putative NiSOD that is 396 bp in length. The deduced amino acid sequence of sp-sod1 shared approximately 85 ∼ 90% identity with the iron sod of S. griseus, S. coelicolor A3(2), and S. avermitilis MA-4680 whereas sp-sod2 shared approximately 87 ∼ 94% identity with S. avermitilis, S. coelicolor A3(2) and S. seoulensis. The sp-sod1 was characterized to be FeSOD in the sod mutant E. coli QC871. The N-terminal deleted sp-sod2 along with a putative signal peptidase sp-sodX, which was immediately downstream, was co-expressed in E. coli. This recombinant E. coli strain did not produce the processed mature Sp-SOD2 unlike S. coelicolor Müller. However, Sp-SOD2 was confirmed to be NiSOD in S. lividans TK24.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farr, S. B. and T. Kogoma (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 55: 561–585.

    CAS  Google Scholar 

  2. Kang, I. H., J. S. Kim, E. J. Kim, and J. K. Lee (2007) Cadaverine protects Vibrio vulnificus from superoxide stress. J. Microbiol. Biotechnol. 17: 176–179.

    CAS  Google Scholar 

  3. Halliwell, B. and J. M. C. Gutteridge (1989) Free radicals in biology and medicine. pp. 96–98. Clarendon Press, Oxford, England.

    Google Scholar 

  4. Fabrizio, P., L. L. Liou, V. N. Moy, A. Diaspro, J. S. Valentine, E. B. Gralla,, and V. D. Longo (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163: 35–46.

    CAS  Google Scholar 

  5. Fridovich, I. (1995) Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64: 97–112.

    Article  CAS  Google Scholar 

  6. Miller, A. F. (2004) Superoxide dismutases: Active sites that save, but a protein that kills. Curr. Opin. Chem. Biol. 8: 162–168.

    Article  CAS  Google Scholar 

  7. Compan, I. and D. Touati (1993) Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J. Bacteriol. 175: 1687–1696.

    CAS  Google Scholar 

  8. Youn, H. D., H. Youn, J. W. Lee, Y. I. Yim, J. H. Lee Y. C. Hah, and S. O. Kang (1996) A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem. J. 318: 889–896.

    CAS  Google Scholar 

  9. Leclere, V., P. Boiron, and R. Blondeau (1999) Diversity of superoxide dismutases among clinical and soil isolates of Streptomyces species. Curr. Microbiol. 39: 365–368.

    Article  CAS  Google Scholar 

  10. Kim, E. J., H. J. Chung, B. Suh, Y. C. Hah, and J. H. Roe (1998). Transcriptional and post-transcriptional regulation by nickel of sodN gene encoding nickel-containing superoxide dismutase from Streptomyces coelicolor Mûller. Mol. Microbiol. 27: 187–195.

    Article  CAS  Google Scholar 

  11. Wuerges, J., J. W. Lee, Y. I. Yim, H. S. Yim, S. O. Kang, and K. D. Carugo (2004) Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc. Natl. Acad. Sci. USA 101: 8569–8574.

    Article  CAS  Google Scholar 

  12. Thomas, E. (2004) In vivo production of active nickel superoxide dismutase from Prochlorococcus marinus MIT9313 is dependent on its cognate peptidase. J. Bacteriol. 186: 7821–7825.

    Article  Google Scholar 

  13. Carlioz, A. and D. Touati (1986) Isolation of superoxide dismutase mutants in Escherichia coli: Is superoxide dismutase necessary for aerobic life? EMBO J. 5: 623–630.

    CAS  Google Scholar 

  14. Sambrook, J. and D. W. Russell (2001) Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  15. Sthapit, B., T. J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng (2004) Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201–206.

    Article  CAS  Google Scholar 

  16. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich, UK.

    Google Scholar 

  17. Beauchamp, C. and I. Fridovich (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gel. Anal. Biochem. 44: 276–278.

    Article  CAS  Google Scholar 

  18. Kang, I. H., J. S. Kim, and J. K. Lee (2007) The virulence of Vibrio vulnificus is affected by the cellular level of superoxide dismutase activity. J. Microbiol. Biotechnol. 17: 1399–1402.

    CAS  Google Scholar 

  19. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876–4882.

    Article  Google Scholar 

  20. Kim, E. J., H. J. Chung, B. Suh, Y. C. Hah, and J. H. Roe (1998) Expression and regulation of the sodF gene encoding iron- and zinc superoxide dismutase in Streptomyces coelicolor Müller. J. Bacteriol. 180: 2014–2020.

    CAS  Google Scholar 

  21. Parker, M. W. and C. C. F. Blake (1988) Crystal structure of manganese superoxide dismutase from Bacillus stearothermophilus at 2.4 Å resolution. J. Mol. Biol. 199: 649–661.

    Article  CAS  Google Scholar 

  22. Stallings, W. C., K. A. Pattridge, R. K. Strong, and M. L. Ludwig (1985) The structure of manganese superoxide dismutase from Thermus thermophilus HB8 at 2.4-Å resolution. J. Biol. Chem. 260: 16424–16432.

    CAS  Google Scholar 

  23. Barondeau, D. A., C. J. Kassmann, C. K. Bruns, J. A. Tainer, and E. D. Getzoff (2004) Nickel superoxide dismutase structure and mechanism. Biochemistry 43: 8038–8047.

    Article  CAS  Google Scholar 

  24. Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura (2003) Complete genome sequence and comparative analysis of the industrial organism Streptomyces avermitilis. Nat. Biotechnol. 21: 526–531.

    Article  Google Scholar 

  25. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  26. Bryngelson, P. A., S. E. Arobo, J. L. Pikhham, D. E. Cabelli, and J. M. Maroney (2004) Expression, reconstitution and mutation of recombinant Streptomyces coelicolor NiSOD. J. Am. Chem. Soc. 126: 460–461.

    Article  CAS  Google Scholar 

  27. Kim, I. K., Y. I. Yim, Y. M. Kim, J. W. Lee, H. S. Yim, and S. O. Kang (2003) CbiX-homologous protein (CbiXhp), a metalbinding protein, from Streptomyces seoulensis is involved in expression of nickel-containing superoxide dismutase. FEMS Microbiol. Lett. 228: 21–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanth, B.K., Oh, TJ. & Sohng, J.K. Identification of two superoxide dismutases (FeSOD and NiSOD) from Streptomyces peucetius ATCC 27952. Biotechnol Bioproc E 15, 785–792 (2010). https://doi.org/10.1007/s12257-010-0009-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0009-z

Keywords

Navigation