Biotechnology and Bioprocess Engineering

, Volume 15, Issue 1, pp 22–29 | Cite as

Recent advances in the development of bioelectronic nose

  • Sang Hun Lee
  • Tai Hyun Park


The olfactory system has the ability to discriminate and identify thousands of odorant compounds at very low concentrations. Recently, many researchers have been trying to develop artificial sensing devices that are based on the olfactory system. A bioelectronic nose, which uses olfactory receptors (ORs) as sensing elements, would benefit naturally optimized molecular recognition. Accordingly, ORs can be effectively used as a biological element in bioelectronic noses. Bioelectronic nose can be classified into cell-based and protein-based biosensors. The cell-based biosensor uses living cells that express olfactory receptors as the biological sensing elements and the protein-based biosensor uses the olfactory receptor protein. The binding of odorant molecules to the ORs can be measured using various methods such as piezoelectric, optic, and electric devices. Thus, bioelectronic nose can be developed by combining the biological sensing elements with these non-biological devices. The application of bioelectronic nose in a wide range of different scientific and medical fields is essentially dependent on the development of highly sensitive and selective biosensors. These sensor systems for the rapid detection of specific odorants are crucial for environmental monitoring, anti-bioterrorism, disease diagnostics, and food safety. In this article, we reviewed recent advances in the development of bioelectronic nose.


olfactory system olfactory biosensor olfactory receptor bioelectronic nose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buck, L. and R. Axel (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65: 175–187.CrossRefGoogle Scholar
  2. 2.
    Malnic, B., J. Hirono, T. Sato, and L. B. Buck (1999) Combinatorial receptor codes for odors. Cell 96: 713–723.CrossRefGoogle Scholar
  3. 3.
    Krautwurst, D., K. W. Yau, and R. R. Reed (1998) Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95: 917–926.CrossRefGoogle Scholar
  4. 4.
    Mori, K., H. Nagao, and Y. Toshihara (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286: 711–715.CrossRefGoogle Scholar
  5. 5.
    Firestein, S. (2001) How the olfactory system makes sense of scents? Nature 413: 211–218.CrossRefGoogle Scholar
  6. 6.
    Akimov, V., E. Alfinito, J. Bausells, I. Benilova, I. C. Paramo, A. Errachid, G. Ferrari, L. Fumagalli, G. Gomila, J. Grosclaude, Y. Hou, N. Jaffrezic-Renault, C. Martelet, E. Pajot-Augy, C. Pennetta, M.-A. Persuy, M. Pla-Roca, L. Reggiani, S. Rodrigues-Segui, O. Ruiz, R. Salesse, J. Samitier, M. Sampietro, A. P. Soldatkin, J. Vidic, and G. Villanueva (2008) Nanobiosensors based on individual olfactory receptors. Analog. Integr. Circ. Sig. Process 57: 197–203.CrossRefGoogle Scholar
  7. 7.
    Turner, A. P. F. and N. Magan (2004) Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2: 161–166.CrossRefGoogle Scholar
  8. 8.
    Dicknson, T. A., J. White, J. S. Kauer, and D. R. Walt (1999) Current trends in ‘artificial-nose’ technology. Trends Biotechnol. 16: 250–258.CrossRefGoogle Scholar
  9. 9.
    Kim, T. H., S. H. Lee, J. Lee, H. S. Song, E. H. Oh, T. H. Park, and S. Hong (2009) Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv. Mater. 21: 91–94.CrossRefGoogle Scholar
  10. 10.
    Vidic, J., M. Pla-Roca, J. Grosclaude, M.-A. Persuy, R. Monnerie, D. Caballero, A. Errachid, Y. Hou, N. Jaffrezic-Renault, R. Salesse, E. Pajot-Augy, and J. Samitier (2007) Gold surface functionalization and patterning for specific immobilization of olfactory receptors carried by nanosomes. Anal. Chem. 79: 3280–3290.CrossRefGoogle Scholar
  11. 11.
    Wu, T. Z. (1999) A piezoelectric biosensor as an olfactory receptor for odour detection: electronic nose. Biosens. Bioelectron. 14: 9–18.CrossRefGoogle Scholar
  12. 12.
    Liu, Q., H. Cai, Y. Xu, Y. Li, R. Li, and P. Wang (2006) Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens. Bioelectron. 22: 318–322.CrossRefGoogle Scholar
  13. 13.
    Jasmina, M., M. A. Persuy, E. Godel, J. Aioun, I. Con nertion, R. Salesse, and E. Pajot-Augy (2005) Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS. J. 272: 524–537.CrossRefGoogle Scholar
  14. 14.
    Ko, H. J. and T. H. Park (2006) Dual signal transduction mediated by a single type of olfactory receptor expressed in a heterologous system. Biol. Chem. 387: 59–68.CrossRefGoogle Scholar
  15. 15.
    Ko, H. J. and T. H. Park (2007) Functional analysis of olfactory receptors expressed in a HEK-293 cell system by using cameleons. J. Microbiol. Biotechnol. 17: 928–933.Google Scholar
  16. 16.
    Marrakchi, M., J. Vidic, N. Jaffrezic-Renault, C. Martelet, and E. Pajot-Augy (2007) A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40. Eur. Biophys. J. 36: 1015–1018.CrossRefGoogle Scholar
  17. 17.
    Wu, T. Z., Y. R. Lo, and E. C. Chan (2001) Exploring the recognized bio-mimicry materials for gas sensing. Biosens. Bioelectron. 16: 945–953.CrossRefGoogle Scholar
  18. 18.
    Benilova, I., V. I. Chegel, Y. V. Ushenin, J. Vidic, A. P. Soldatkin, C. Martelet, E. Pajot, and N. Jaffrezic-Renault (2007) Stimulation of human olfactory receptor 17–40 with odorants probed by surface plasmon resonance. Eur. Biophys. J. 37: 807–814.CrossRefGoogle Scholar
  19. 19.
    Zhang, X. and S. Firestein (2002) The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 5: 124–133.Google Scholar
  20. 20.
    Glusman, G., I. Yanai, I. Rubin, and D. Lancet (2001) The Complete Human Olfactory Subgenome. Genom. Res. 11: 685–702.CrossRefGoogle Scholar
  21. 21.
    Zozulya, S., F. Echeverri, and T. Nguyen (2001) The human olfactory receptor repertoire. Genome Biol. 2: 0018.0011–0018.0012.CrossRefGoogle Scholar
  22. 22.
    Touhara, K. (2007) Deorphanizing vertebrate olfactory receptors: recent advances in odorant-response assay. Neurochem. Int. 51: 132–139.CrossRefGoogle Scholar
  23. 23.
    Song, H. S., S. H. Lee, E. H. Oh, and T. H. Park (2009) Expression, solubilization and purification of a human olfactory receptor from Escherichia coli. Curr. Microbiol. 59: 309–314.CrossRefGoogle Scholar
  24. 24.
    Katada, S., T. Nakagawa, H. Kataoka, and K. Touhara (2003) Odorant response assays for a heterologously expressed olfactory receptor. Biochem. Biophys. Res. Commun. 305: 964–969.CrossRefGoogle Scholar
  25. 25.
    Shirokova, E., K. Schmiedeberg, P. Bedner, H. Niessen, K. Willecke, J. D. Raguse, W. Meyerhof, and D. Krautwurst (2005) Identification of specific ligands for orphan olfactory receptor. J. Biol. Chem. 280: 11807–11815.CrossRefGoogle Scholar
  26. 26.
    Matarazzo, V., O. Clot-Faybesse, B. Marcet, G. Guiraudie-Capraz, B. Atanasova, G. Devauchelle, M. Cerutti, P. Etievant, and C. Ronin (2005) Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system. Chem. Senses. 30: 195–207.CrossRefGoogle Scholar
  27. 27.
    Saito, H., M. Kubota, R. W. Roberts, Q. Chi, and H. Matsunami (2004) RTP Family Members Induce Functional Expression of Mammalian Odorant Receptors. Cell 119: 679–691.CrossRefGoogle Scholar
  28. 28.
    Neuhaus, E. M., A. Mashukova, W. Zhang, J. Barbour, and H. Hatt (2006) A specific heat shock protein enhances the expression of mammalian olfactory receptor proteins. Chem. Senses. 31: 445–452.CrossRefGoogle Scholar
  29. 29.
    Mashukova, A., M. Spehr, H. Hatt, and E. M. Neuhaus (2006) β-arrestin2-mediated internalization of mammalian odorant receptors. J. Neurosci. 26: 9902–9912.CrossRefGoogle Scholar
  30. 30.
    Wu, C., P. Chen, H. Yu, Q. Liu, X. Zong, H. Cai, and P. Wang (2009) A novel biomimetic olfactory-based biosesor for single olfactory sensory neuron monitoring. Biosens. Bioelectron. 24: 1498–1502.CrossRefGoogle Scholar
  31. 31.
    Stein, B., M. George, H. E. Gaub, and W. J. Parak (2004) Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor. Sens. Actuators. B. 98: 299–304.CrossRefGoogle Scholar
  32. 32.
    Xu, G. X., X. S. Ye, L. Qin, Y. Xu, Y. Li, R. Li, and P. Wang (2005) Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens. Bioelectron. 20: 1757–1763.CrossRefGoogle Scholar
  33. 33.
    Hou, Y., N. Jaffrezic-Renault, C. Martelet, A. Zhang, J. Minic-Vidic, T. Gorojankina, M.-A. Persuy, E. Pajot-Augy, R. Salesse, V. Akimov, A. Reggiani, C. Pennetta, E. Alfinito, O. Ruiz, G. Gomila, J. Samitier, and A. Errachid (2007) A novel detection strategy for odorant molecules based on controlled bioengineering of rat olfactory recpetor I7. Biosens. Bioelectron. 22: 1550–1555.CrossRefGoogle Scholar
  34. 34.
    Lee, S. H., S. B. Jun, H. J. Ko, S. J. Kim, and T. H. Park (2009) Cell-based olfactory biosensor using microfabricated planar electrode. Biosens. Bioelectron. 24: 2659–2664.CrossRefGoogle Scholar
  35. 35.
    Lee, S. H., S. H. Jeong, S. B. Jun, S. J. Kim, and T. H. Park (2009) Enhancement of cellular olfactory signal by electrical stimulation. Electrophoresis 30: 3283–3288.CrossRefGoogle Scholar
  36. 36.
    Homola, J., S. S. Yee, and G. Gauglitz (1999) Surface plasmon resonance sensors: review Sens. Actuator. B. 54. 3–15.CrossRefGoogle Scholar
  37. 37.
    Rich. R. L. and D. G. Myszka (2008) Survey of the year 2007 commercial optical biosensor literature. J. Mol. Recognit. 21: 355–400.CrossRefGoogle Scholar
  38. 38.
    McDonnell, J. M. (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr. Opin. Chem. Biol. 5: 572–577.CrossRefGoogle Scholar
  39. 39.
    Harding, P. J., T. C. Hadingham, J. M. McDonnell, and A. Watts (2006) Direct analysis of a GPCR-agonist interaction by surface plasmon resonance. Eur. Biophys. J. 35: 709–712.CrossRefGoogle Scholar
  40. 40.
    Stenlund, P., G. J. Babcock, J. Sodroski, and D. G. Myszka (2003) Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Anal. Biochem. 316: 243–250.CrossRefGoogle Scholar
  41. 41.
    Bieri, C., O. P. Ernst, S. Heyse, K. P. Hofmann, and H. Vogel (1999) Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nat. Biotech. 17: 1105–1108.CrossRefGoogle Scholar
  42. 42.
    Komolov, K. E., I. Senin, P. P. Philippov, and K. W. Koch (2006) Surface plasmon resonance study of G pro tein/receptor coupling in a lipid bilayer-free system. Anal. Chem. 78: 1228–1234.CrossRefGoogle Scholar
  43. 43.
    Vidic, J. M., J. Grosclaude, M. A. Persuy, A. Aioun, R. Salesse, and E. Pajot-Augy (2006) Quantitative assessment of olfacotry recpetors activity in immobilized nanosomes: a novel concept for bioelectronic nose. Lab Chip. 6: 1026–1032.CrossRefGoogle Scholar
  44. 44.
    Wetzel, C. H., M. Oles, C. Wellerdieck, M. Kuczkowiak, G. Gisselmann, and H. Hatt (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus Laevis Oocytes. J. Neurosci. 19: 7426–7433.Google Scholar
  45. 45.
    Lee, J. Y., H. J. Ko, S. H. Lee, and T. H. Park (2006) Cell-based measurement of odorant molecules using surface plasmon resonance. Enzy. Microb. Technol. 39: 375–380.CrossRefGoogle Scholar
  46. 46.
    Lee, S. H., H. J. Ko, and T. H. Park (2009) Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens. Bioelectron. 25: 55–60.CrossRefGoogle Scholar
  47. 47.
    Ameer, Q. and S. B. Adeloju (2005) Polypyrrole-based electronic noses for environmental and industrial analysis. Sens. Actuators. B. 106: 541–552.CrossRefGoogle Scholar
  48. 48.
    Wyszynski, B., P. Somboon, and T. Nakamoto (2007) Pegylated lipids as coatings for QCM odor-sensors. Sens. Actuators. B. 121: 538–544.CrossRefGoogle Scholar
  49. 49.
    Kanazawa, K. and N. J. Cho (2009) Quartz crystal microbalance as a sensor to characterize macromolecular assembly dynamics. J. Sens. 2009: Doi:10.1155/2009/824947.Google Scholar
  50. 50.
    Martin, S. J., V. E. Granstaff, and G. C. Frye (1991) Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 63: 2272–2281.CrossRefGoogle Scholar
  51. 51.
    Sung, J. H., H. J. Ko, and T. H. Park (2006) Piezoelectric biosensor using olfactory recpetor protein expressed in Escherichia coli. Biosens. Bioelectron. 21: 1981–1986.CrossRefGoogle Scholar
  52. 52.
    Ko, H. J. and T. H. Park (2005) Piozoelectric olfactory receptor biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system Biosens. Bioelectron. 20: 1327–1332.CrossRefGoogle Scholar
  53. 53.
    Aleshin, A. N. (2006) Polymer nanofibers and nanotubes: charge transport and device applications. Adv. Mat. 18: 17–27.CrossRefGoogle Scholar
  54. 54.
    Kaiser, A. B. (2001) Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64: 1–49.CrossRefGoogle Scholar
  55. 55.
    Li, J., Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyapan (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3: 929–933.CrossRefGoogle Scholar
  56. 56.
    Vogel, R. and F. Siebert (2001) Conformations of the active and inactive states of opsin. J. Biol. Chem. 276: 38487–38493.CrossRefGoogle Scholar
  57. 57.
    Yoon, H., S. H. Lee, O. S. Kwon, H. S. Song, E. H. Oh, T. H. Park, and J. Jang (2009) Polypyrrole nanotubes conjugated with human olfactory receptors: High-performance transducers for FET-Type Bioelectronic nose. Angew. Chem. Int. Ed. 48: 2755–2758.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Chemical and Biological Engineering, Institute of BioengineeringSeoul National UniversitySeoulKorea

Personalised recommendations