Skip to main content
Log in

Functional expression of anti-hepatitis B virus (HBV) preS2 antigen scFv by cspA promoter system in Escherichia coli and application as a recognition molecule for single-walled carbon nanotube (SWNT) field effect transistor (FET)

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The preS2 antigens of hepatitis B virus (HBV), which causes a serious health problem in the world, have been implicated in hepatocyte cell binding and viral penetration. Therefore, the importance of antibody production against preS2 antigen for early diagnosis of HBV has been well established. In this study, the recombinant HBV preS2 single chain variable fragment (scFv) antibody was successfully expressed in E. coli with the novel cold shock vector (pCold) under the cspA promoter, and its expression level was compared with the pET vector under the T7 promoter. Additionally, a host with an oxidizing cytoplasm, E. coli trxB/gor double mutant, was used to improve the soluble expression. The anti-HBV preS2 scFv using pCold vector was successfully expressed in a soluble and functional form in both wild type and double mutant E. coli, while the scFv using the pET vector was expressed in an insoluble form in spite of using a double mutant providing an oxidizing environment. The induction with 0.05 mM IPTG showed a 2-fold higher functional expression compared to induction with 1 mM IPTG, and the functional expression at the induction temperature (15°C), which is optimal temperature for pCold vector, was improved 2-fold and 3- fold at 4 and 25°C, respectively. The efficacy of anti-HBV preS2 scFv for detecting HBV preS2 antigen was tested and verified by using Ni-decorated single-walled carbon nanotube (SWNT) field effect transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, M. H. (2007) Hepatitis B virus infection. Semin. Fetal Neonatal Med. 12: 160–167.

    Article  Google Scholar 

  2. Alter, M. J. (2003) Epidemiology and prevention of hepatitis B. Semin. Liver Dis. 23: 39–46.

    Article  Google Scholar 

  3. Tiollais, P., P. Christine, and A. Dejean. (1985) The hepatitis B virus. Nature 317: 489–495.

    Article  CAS  Google Scholar 

  4. Ise, I., F. Tsuda, S. Aiimra, A. Machida, E. Takai, H. Miyamoto, Y. Akahane, Y. Miyakawa, and M. Mayumi (1988) Antibodies to translation products of the pre-S1 and pre-S2 regions of the envelop gene of hepatitis B virus in fulminant hepatitis B. Hepatology 8: 1089–1093.

    Article  CAS  Google Scholar 

  5. Shen, Z., G. A. Stryker, R. L. Mernaugh, L. Yu, H. Yan, and X. Zeng (2005) Single-chain fragment variable antibody piezoimmunosensors. Anal. Chem. 77: 797–805.

    Article  CAS  Google Scholar 

  6. Kipriyanov, S. M. (2002) High-level periplasmic expression and purification of scFvs. Methods Mol. Biol. 178: 333–341.

    CAS  Google Scholar 

  7. Anderson, D. C. and D. E. Reily (2004) Production technologies for monoclonal antibodies and their fragments. Curr Opin Biotechnol. 15: 456–462.

    Article  Google Scholar 

  8. Jurado, P., D. Ritz, J. Beckwith, V. Lorenzo, and L. A. Fernandez (2002) Production of functional single-chain Fv antibodies in the cytoplasm of E. coli. J. Mol. Biol. 320: 1–10.

    Article  CAS  Google Scholar 

  9. Baneyx, F. and J. A. Vasina (1996) Recombinant protein expression at low temperatures under the transcriptional control of the major Escherichia coli cold shock promoter cspA. Appl. Environ. Microbiol. 62: 1444–1447.

    Google Scholar 

  10. Qing, G., L. C. Ma, A. Khorchid, G. V. Swapna, T. K. Mal, M. M. Takayama, B. Xia, S. Phadtare, H. Ke, T. Acton, G. T. Montelione, M. Ikura, and M. Inouye (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22: 877–882.

    Article  CAS  Google Scholar 

  11. Chen, R. J., S. Bangsaruntip, K. A. Drouvalakis, N. W. Kam, M. Shim, Y. Li, W. Kim, P. J. Utz, and H. Dai (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA. 100: 4984–4989.

    Article  CAS  Google Scholar 

  12. Besteman, K., J. O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker (2003) Enzyme-coated carbon nanotubes as single molecule biosensors. Nano Lett. 3: 727–730.

    Article  CAS  Google Scholar 

  13. Star, A., J. P. Gabriel, K. Bradley, and G. Grüner (2003) Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3: 459–463.

    Article  CAS  Google Scholar 

  14. Byon, H. R. and H. C. Choi (2006) Network single walled carbon nanotube field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor application. J. Am. Chem. Soc. 128: 2188–2189.

    Article  CAS  Google Scholar 

  15. So, H. M., K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee (2005) Single-walled carbon nanotube biosensors using Aptamers as molecular recognition elements. J. Am. Chem. Soc. 127: 11906–11907.

    Article  CAS  Google Scholar 

  16. Kim, J. P., B. Y. Lee, S. Hong, and S. J. Sim (2008) Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments Anal. Biochem. 381: 193–198.

    Article  CAS  Google Scholar 

  17. Burnette, W. N. (1981) “Western blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112: 195–203.

    Article  CAS  Google Scholar 

  18. Kong, J., H. T. Soh, A. M. Cassel, C. F. Quate, and H. Dai (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395: 878–881.

    Article  CAS  Google Scholar 

  19. Prinz, W. A., F. Aslund, A. Holmgren, and J. Beckwith (1997) The role of the thioredoxin and gluta-redoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J. Biol. Chem. 272: 15661–15667.

    Article  CAS  Google Scholar 

  20. Makrides, S. C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev. 60: 512–538.

    CAS  Google Scholar 

  21. Goldstein, J., N. S. Pollitt, and M. Inouye (1990) Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA. 87: 283–287.

    Article  CAS  Google Scholar 

  22. Baneyx, F. and M. Mujacic (2004) Recombinant protein folding and misfolding in E. coli. Nat. Biotechnol. 22: 1399–1408.

    Article  CAS  Google Scholar 

  23. Liao, H. H. (1991) Effect of temperature on the expression of wild-type and thermostable mutants of kanamycin nucleotidyltransferase in Escherichia coli. Protein Expr. Purif. 2: 43–50.

    Article  CAS  Google Scholar 

  24. Lo, Y. -S., D. H. Nam, H. -M. So, H. Chang, J. -J. Kim, Y. H. Kim, and J. -O. Lee (2009) Oriented immobilization of antibody fragments on Ni-decorated single-walled carbon nanotube devices. ACS Nano. 3: 3649–3655.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Hwan Kim or Byoung-In Sang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, SA., Nam, D.H., Lo, YS. et al. Functional expression of anti-hepatitis B virus (HBV) preS2 antigen scFv by cspA promoter system in Escherichia coli and application as a recognition molecule for single-walled carbon nanotube (SWNT) field effect transistor (FET). Biotechnol Bioproc E 15, 810–816 (2010). https://doi.org/10.1007/s12257-009-3040-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3040-1

Keywords

Navigation