Biotechnology and Bioprocess Engineering

, Volume 15, Issue 3, pp 407–413

Inhibitory effect of fenugreek galactomannan on digestive enzymes related to diabetes, hyperlipidemia, and liver-kidney dysfunctions

  • Khaled Hamden
  • Bassem Jaouadi
  • Serge Carreau
  • Samir Bejar
  • Abdelfattah Elfeki
Research Paper

Abstract

The present study was undertaken to investigate the effect of fenugreek galactomannan on intestinal glucose uptake in surviving diabetic rats. It explored their potential action with respect to lowering maltase, lactase, and sucrase activities in the small intestine of galactomannan-treated diabetic group compared to the diabetic control group. The findings indicate that the increase of blood glucose levels was significantly suppressed in the galactomannan-treated group than those in the diabetic rats. Moreover, the galactomannan isolated from fenugreek exhibited a prominent selective inhibitory effect against intestinal lipase activity. It was found to significantly delay the absorption of LDL-cholesterol and triglycerides and the increase in HDL-cholesterol. In addition, fenugreek galactomannan efficiently protect the hepatic function observed by the considerable decrease of aspartate and alanine transaminases (AST and ALT) and lactate deshydrogenase (LDH) contents in the serum of diabetic rats. The beneficial effects of fenugreek galactomannan were also evidenc-ed by their capacity to inhibit diabetes-induced kidney injury through lowering the urea and creatinine content in plasma. Overall, the conclusion of the present study indicate that fenugreek galactomannan displays a number of promising properties and attributes for future applications as therapeutic agents in biotechnological and bioprocess-based technologies, particularly those interested in the development of anti-diabetic and hypolipidemic drugs.

Keywords

fenugreek galactomannan diabetes lipase disaccharidases drugs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smyth, S. and A. Heron (2006) Diabetes and obesity: the twin epidemics. Nat. Med. 12: 75–80.CrossRefGoogle Scholar
  2. 2.
    Kowluru, R. A. and M. Kanwar (2009) Oxidative stress and the development of diabetic retinopathy: contributory role of matrix metalloproteinase-2. Free Radic. Biol. Med. 46: 1677–1685.CrossRefGoogle Scholar
  3. 3.
    Kang, K. A., J. S. Kim, R. Zhang, M. J. Piao, W. Y. Chang, K. C. Kim, G. Y. Kim, M. Jin, and J. W. Hyun (2009) Protective mechanism of KIOM-4 against Streptozotocin induced diabetic cells: involvement of heme oxygenase-1. Biotechnol. Bioproc. Eng. 14: 295–301.CrossRefGoogle Scholar
  4. 4.
    Hamden, K., S. Carreau, K. Jamoussi, F. Ayadi, F. Garmazi, and A. Elfeki (2009) Dietary Nigella sativa and Peganum harmala oils reverses hyperglycaemia, hepatotoxicity, and metabolism in rats. Food Sci. Biotechnol. 18: 739–744.Google Scholar
  5. 5.
    Hamden, K., M. A. Boujbiha, H. Masmoudi, F. M. Ayadi, K. Jamoussi, and A. Elfeki (2009) Combined vitamins (C and E) and insulin improve oxidative stress and pancreatic and hepatic injury in alloxan diabetic rats. Biomed. Pharmacother. 63: 95–99.CrossRefGoogle Scholar
  6. 6.
    Hamden, K., S. Carreau, K. Jamoussi, F. Ayadi, F. Garmazi, N. Mezgenni, and A. Elfeki (2008) Inhibitory effects of 1alpha, 25dihydroxyvitamin D3 and Ajuga iva extract on oxidative stress, toxicity and hypo-fertility in diabetic rat testes. J. Physiol. Biochem. 64: 231–239.Google Scholar
  7. 7.
    Ku, S., H. You, and G. Ji (2009) Enhancement of antitumorigenic polysaccharide production, adhesion, and branch formation of Bifidobacterium bifidum BGN4 by phytic acid. Food Sci. Biotechnol. 18: 749–754.Google Scholar
  8. 8.
    Park, G., D. Paudyal, Y. Park, C. Lee, I. Hwang, G. R. Tripathi, and H. Cheong (2008) Effects of pine needle extracts on plasma cholesterol, fibrinolysis and gastrointestinal motility. Biotechnol. Bioproc. Eng. 13: 262–268.CrossRefGoogle Scholar
  9. 9.
    Heo, S. J., J. Y. Hwang, J. I. Choi, J. S. Han, H. J. Kim, and Y. J. Jeon (2009) Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent alpha-glucosidase and alphaamylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol. 615: 252–256.CrossRefGoogle Scholar
  10. 10.
    Reddy, P. P., A. K. Tiwari, R. R. Rao, K. Madhusudhana, V. R. S. Rao, A. Z. Ali, K. S. Babu, and J. M. Rao (2009) New labdane diterpenes as intestinal alpha-glucosidase inhibitor from antihyperglycemic extract of Hedychium spicatum (Ham. Ex Smith) rhizomes. Bioorg. Med. Chem. Lett. 19: 2562–2565.CrossRefGoogle Scholar
  11. 11.
    Cha, W., J. Ding, and D. Choi (2009) Comparative evaluation of antioxidant, nitrite scavenging, and antitumor effects of Antrodia camphorata extract. Biotechnol. Bioproc. Eng. 14: 232–237.CrossRefGoogle Scholar
  12. 12.
    Jeong, H., S. J. Yoon, and Y. R. Pyun (2008) Polysaccharides from edible mushroom hinmogi (Tremella fuciformis) inhibit differentiation of 3T3-L1 adipocytes by reducing mRNA expression of PPARγ, C/EBPα, and leptin. Food Sci. Biotechnol. 17: 267–273Google Scholar
  13. 13.
    Hwang, J., J. Jeong, and K. Yu (2009) Isolation and characterization of intestinal immune system modulating and anticancer active fractions from the herbal prescriptions. Food Sci. Biotechnol. 18: 323–329.Google Scholar
  14. 14.
    Srichamroen, A., A. B. Thomson, C. J. Field, and T. K. Basu (2009) In vitro intestinal glucose uptake is inhibited by galactomannan from Canadian fenugreek seed (Trigonella foenum graecum L) in genetically lean and obese rats. Nutr. Res. 29: 49–54.CrossRefGoogle Scholar
  15. 15.
    Ulbricht, C., E. Basch, D. Burke, L. Cheung, E. Ernst, N. Giese, I. Foppa, P. Hammerness, S. Hashmi, G. Kuo, M. Miranda, S. Mukherjee, M. Smith, D. Sollars, S. Tanguay-Colucci, N. Vijayan, and W. Weissner (2007) Fenugreek (Trigonella foenumgraecum L. Leguminosae): an evidence-based systematic review by the natural standard research collaboration. J. Herb. Pharmacother. 7: 143–177.CrossRefGoogle Scholar
  16. 16.
    Doyle, J. P., G. Lyons, and E. R. Morris (2008) New proposals on “hyperentanglement” of galactomannans: Solution viscosity of fenugreek gum under neutral and alkaline conditions. Food Hydrocol. 23: 1501–1510.CrossRefGoogle Scholar
  17. 17.
    Tahara, A., A. Matsuyama-Yokono, R. Nakano, Y. Someya, M. Hayakawa, and M. Shibasaki (2009) Effects of the combination of dipeptidyl peptidase-IV inhibitor ASP8497 and antidiabetic drugs in streptozotocin-nicotinamide-induced mildly diabetic mice. Eur. J. Pharmacol. 605: 170–176.CrossRefGoogle Scholar
  18. 18.
    Dahlqvist, A. (1984) Assay of intestinal disaccharidases. Scand. J. Clin. Lab. Invest. 44: 169–172.CrossRefGoogle Scholar
  19. 19.
    Tietz, N. W. and E. A. Fiereck (1966) A specific method for serum lipase determination. Clin. Chim. Acta 13: 352–358.CrossRefGoogle Scholar
  20. 20.
    Wild, S., G. Roglic, A. Green, R. Sicree, and H. King (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047–1053.CrossRefGoogle Scholar
  21. 21.
    Campbell, L., D. Baker, and R. Campbell (2000) Miglitol: Assessment of its role in the treatment of patients with diabetes mellitus. Ann. Pharmacother. 34: 1291–1301.CrossRefGoogle Scholar
  22. 22.
    Basch, E., C. Ulbricht, G. Kuo, P. Szapary, and M. Smith (2003) Therapeutic applications of fenugreek. Altern. Med. Rev. 8: 20–27.Google Scholar
  23. 23.
    Suzuki, Y., M. Sano, K. Hayashida, I. Ohsawa, S. Ohta, and K. Fukuda (2009) Are the effects of alpha-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract? FEBS Lett. 583: 2157–2159.CrossRefGoogle Scholar
  24. 24.
    Kim, K. Y., K. A. Nam, H. Kurihara, and S. M. Kim (2008) Potent alpha-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69: 2820–2825.CrossRefGoogle Scholar
  25. 25.
    Yoshida, K., A. Hishida, O. Iida, K. Hosokawa, and J. Kawabata (2008) Flavonol caffeoylglycosides as alpha-glucosidase inhibitors from Spiraea cantoniensis flower. J. Agric. Food Chem. 56: 4367–4371.CrossRefGoogle Scholar
  26. 26.
    Hamden, K., F. Ayadi, K. Jamoussi, H. Masmoudi, and A. Elfeki (2008) Therapeutic effect of phytoecdysteroids rich extract from Ajuga iva on alloxan induced diabetic rats liver, kidney and pancreas. Biofactors 33: 165–175.CrossRefGoogle Scholar
  27. 27.
    Hamden, K., S. Carreau, K. Jamoussi, S. Miladi, S. Lajmi, D. Aloulou, F. Ayadi, and A. Elfeki (2009) 1Alpha, 25 dihydroxyvitamin D3: therapeutic and preventive effects against oxidative stress, hepatic, pancreatic and renal injury in alloxan-induced diabetes in rats. J. Nutr. Sci. Vitaminol. 55: 215–222.CrossRefGoogle Scholar
  28. 28.
    Sauvaire, Y., G. Ribes, J. C. Baccou, and M. M. Loubatieres- Mariani (1991) Implication of steroid saponins and sapogenins in the hypocholesterolemic effect of fenugreek. Lipids 26: 191–197.CrossRefGoogle Scholar
  29. 29.
    Sharma, R. D. (1986) An evaluation of hypocholesterolemic factor of fenugreek seeds (T. foenum graecum) in rats. Nutr. Rep. Int. 33: 669–677.Google Scholar
  30. 30.
    Jaison, P. L. and P. S. Appukuttan (1992) Rapid isolation of human plasma anti-alpha-galactoside antibody using sugarspecific binding to guar galactomannan or agarose. Indian J. Biochem. Biophys. 29: 266–270.Google Scholar
  31. 31.
    Hamden, K., N. Allouche, M. Damak, and A. Elfeki (2009) Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem. Biol. Interact. 180: 421–432.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Khaled Hamden
    • 1
  • Bassem Jaouadi
    • 2
  • Serge Carreau
    • 3
  • Samir Bejar
    • 2
  • Abdelfattah Elfeki
    • 1
  1. 1.Animal Ecophysiology LaboratoryFaculty of Sciences of SfaxSfaxTunisia
  2. 2.Laboratory of Prokaryotic Enzymes and MetabolitesCentre of Biotechnology of SfaxSfaxTunisia
  3. 3.Department of BiochemistryUniversity of Caen-Basse Normandie, USC INRA, EA2608CHU-CaenFrance

Personalised recommendations