Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Inhibitory effect of fenugreek galactomannan on digestive enzymes related to diabetes, hyperlipidemia, and liver-kidney dysfunctions

  • 430 Accesses

  • 27 Citations

Abstract

The present study was undertaken to investigate the effect of fenugreek galactomannan on intestinal glucose uptake in surviving diabetic rats. It explored their potential action with respect to lowering maltase, lactase, and sucrase activities in the small intestine of galactomannan-treated diabetic group compared to the diabetic control group. The findings indicate that the increase of blood glucose levels was significantly suppressed in the galactomannan-treated group than those in the diabetic rats. Moreover, the galactomannan isolated from fenugreek exhibited a prominent selective inhibitory effect against intestinal lipase activity. It was found to significantly delay the absorption of LDL-cholesterol and triglycerides and the increase in HDL-cholesterol. In addition, fenugreek galactomannan efficiently protect the hepatic function observed by the considerable decrease of aspartate and alanine transaminases (AST and ALT) and lactate deshydrogenase (LDH) contents in the serum of diabetic rats. The beneficial effects of fenugreek galactomannan were also evidenc-ed by their capacity to inhibit diabetes-induced kidney injury through lowering the urea and creatinine content in plasma. Overall, the conclusion of the present study indicate that fenugreek galactomannan displays a number of promising properties and attributes for future applications as therapeutic agents in biotechnological and bioprocess-based technologies, particularly those interested in the development of anti-diabetic and hypolipidemic drugs.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Smyth, S. and A. Heron (2006) Diabetes and obesity: the twin epidemics. Nat. Med. 12: 75–80.

  2. 2.

    Kowluru, R. A. and M. Kanwar (2009) Oxidative stress and the development of diabetic retinopathy: contributory role of matrix metalloproteinase-2. Free Radic. Biol. Med. 46: 1677–1685.

  3. 3.

    Kang, K. A., J. S. Kim, R. Zhang, M. J. Piao, W. Y. Chang, K. C. Kim, G. Y. Kim, M. Jin, and J. W. Hyun (2009) Protective mechanism of KIOM-4 against Streptozotocin induced diabetic cells: involvement of heme oxygenase-1. Biotechnol. Bioproc. Eng. 14: 295–301.

  4. 4.

    Hamden, K., S. Carreau, K. Jamoussi, F. Ayadi, F. Garmazi, and A. Elfeki (2009) Dietary Nigella sativa and Peganum harmala oils reverses hyperglycaemia, hepatotoxicity, and metabolism in rats. Food Sci. Biotechnol. 18: 739–744.

  5. 5.

    Hamden, K., M. A. Boujbiha, H. Masmoudi, F. M. Ayadi, K. Jamoussi, and A. Elfeki (2009) Combined vitamins (C and E) and insulin improve oxidative stress and pancreatic and hepatic injury in alloxan diabetic rats. Biomed. Pharmacother. 63: 95–99.

  6. 6.

    Hamden, K., S. Carreau, K. Jamoussi, F. Ayadi, F. Garmazi, N. Mezgenni, and A. Elfeki (2008) Inhibitory effects of 1alpha, 25dihydroxyvitamin D3 and Ajuga iva extract on oxidative stress, toxicity and hypo-fertility in diabetic rat testes. J. Physiol. Biochem. 64: 231–239.

  7. 7.

    Ku, S., H. You, and G. Ji (2009) Enhancement of antitumorigenic polysaccharide production, adhesion, and branch formation of Bifidobacterium bifidum BGN4 by phytic acid. Food Sci. Biotechnol. 18: 749–754.

  8. 8.

    Park, G., D. Paudyal, Y. Park, C. Lee, I. Hwang, G. R. Tripathi, and H. Cheong (2008) Effects of pine needle extracts on plasma cholesterol, fibrinolysis and gastrointestinal motility. Biotechnol. Bioproc. Eng. 13: 262–268.

  9. 9.

    Heo, S. J., J. Y. Hwang, J. I. Choi, J. S. Han, H. J. Kim, and Y. J. Jeon (2009) Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent alpha-glucosidase and alphaamylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol. 615: 252–256.

  10. 10.

    Reddy, P. P., A. K. Tiwari, R. R. Rao, K. Madhusudhana, V. R. S. Rao, A. Z. Ali, K. S. Babu, and J. M. Rao (2009) New labdane diterpenes as intestinal alpha-glucosidase inhibitor from antihyperglycemic extract of Hedychium spicatum (Ham. Ex Smith) rhizomes. Bioorg. Med. Chem. Lett. 19: 2562–2565.

  11. 11.

    Cha, W., J. Ding, and D. Choi (2009) Comparative evaluation of antioxidant, nitrite scavenging, and antitumor effects of Antrodia camphorata extract. Biotechnol. Bioproc. Eng. 14: 232–237.

  12. 12.

    Jeong, H., S. J. Yoon, and Y. R. Pyun (2008) Polysaccharides from edible mushroom hinmogi (Tremella fuciformis) inhibit differentiation of 3T3-L1 adipocytes by reducing mRNA expression of PPARγ, C/EBPα, and leptin. Food Sci. Biotechnol. 17: 267–273

  13. 13.

    Hwang, J., J. Jeong, and K. Yu (2009) Isolation and characterization of intestinal immune system modulating and anticancer active fractions from the herbal prescriptions. Food Sci. Biotechnol. 18: 323–329.

  14. 14.

    Srichamroen, A., A. B. Thomson, C. J. Field, and T. K. Basu (2009) In vitro intestinal glucose uptake is inhibited by galactomannan from Canadian fenugreek seed (Trigonella foenum graecum L) in genetically lean and obese rats. Nutr. Res. 29: 49–54.

  15. 15.

    Ulbricht, C., E. Basch, D. Burke, L. Cheung, E. Ernst, N. Giese, I. Foppa, P. Hammerness, S. Hashmi, G. Kuo, M. Miranda, S. Mukherjee, M. Smith, D. Sollars, S. Tanguay-Colucci, N. Vijayan, and W. Weissner (2007) Fenugreek (Trigonella foenumgraecum L. Leguminosae): an evidence-based systematic review by the natural standard research collaboration. J. Herb. Pharmacother. 7: 143–177.

  16. 16.

    Doyle, J. P., G. Lyons, and E. R. Morris (2008) New proposals on “hyperentanglement” of galactomannans: Solution viscosity of fenugreek gum under neutral and alkaline conditions. Food Hydrocol. 23: 1501–1510.

  17. 17.

    Tahara, A., A. Matsuyama-Yokono, R. Nakano, Y. Someya, M. Hayakawa, and M. Shibasaki (2009) Effects of the combination of dipeptidyl peptidase-IV inhibitor ASP8497 and antidiabetic drugs in streptozotocin-nicotinamide-induced mildly diabetic mice. Eur. J. Pharmacol. 605: 170–176.

  18. 18.

    Dahlqvist, A. (1984) Assay of intestinal disaccharidases. Scand. J. Clin. Lab. Invest. 44: 169–172.

  19. 19.

    Tietz, N. W. and E. A. Fiereck (1966) A specific method for serum lipase determination. Clin. Chim. Acta 13: 352–358.

  20. 20.

    Wild, S., G. Roglic, A. Green, R. Sicree, and H. King (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047–1053.

  21. 21.

    Campbell, L., D. Baker, and R. Campbell (2000) Miglitol: Assessment of its role in the treatment of patients with diabetes mellitus. Ann. Pharmacother. 34: 1291–1301.

  22. 22.

    Basch, E., C. Ulbricht, G. Kuo, P. Szapary, and M. Smith (2003) Therapeutic applications of fenugreek. Altern. Med. Rev. 8: 20–27.

  23. 23.

    Suzuki, Y., M. Sano, K. Hayashida, I. Ohsawa, S. Ohta, and K. Fukuda (2009) Are the effects of alpha-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract? FEBS Lett. 583: 2157–2159.

  24. 24.

    Kim, K. Y., K. A. Nam, H. Kurihara, and S. M. Kim (2008) Potent alpha-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69: 2820–2825.

  25. 25.

    Yoshida, K., A. Hishida, O. Iida, K. Hosokawa, and J. Kawabata (2008) Flavonol caffeoylglycosides as alpha-glucosidase inhibitors from Spiraea cantoniensis flower. J. Agric. Food Chem. 56: 4367–4371.

  26. 26.

    Hamden, K., F. Ayadi, K. Jamoussi, H. Masmoudi, and A. Elfeki (2008) Therapeutic effect of phytoecdysteroids rich extract from Ajuga iva on alloxan induced diabetic rats liver, kidney and pancreas. Biofactors 33: 165–175.

  27. 27.

    Hamden, K., S. Carreau, K. Jamoussi, S. Miladi, S. Lajmi, D. Aloulou, F. Ayadi, and A. Elfeki (2009) 1Alpha, 25 dihydroxyvitamin D3: therapeutic and preventive effects against oxidative stress, hepatic, pancreatic and renal injury in alloxan-induced diabetes in rats. J. Nutr. Sci. Vitaminol. 55: 215–222.

  28. 28.

    Sauvaire, Y., G. Ribes, J. C. Baccou, and M. M. Loubatieres- Mariani (1991) Implication of steroid saponins and sapogenins in the hypocholesterolemic effect of fenugreek. Lipids 26: 191–197.

  29. 29.

    Sharma, R. D. (1986) An evaluation of hypocholesterolemic factor of fenugreek seeds (T. foenum graecum) in rats. Nutr. Rep. Int. 33: 669–677.

  30. 30.

    Jaison, P. L. and P. S. Appukuttan (1992) Rapid isolation of human plasma anti-alpha-galactoside antibody using sugarspecific binding to guar galactomannan or agarose. Indian J. Biochem. Biophys. 29: 266–270.

  31. 31.

    Hamden, K., N. Allouche, M. Damak, and A. Elfeki (2009) Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem. Biol. Interact. 180: 421–432.

Download references

Author information

Correspondence to Khaled Hamden.

Additional information

Both authors have equally contributed to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hamden, K., Jaouadi, B., Carreau, S. et al. Inhibitory effect of fenugreek galactomannan on digestive enzymes related to diabetes, hyperlipidemia, and liver-kidney dysfunctions. Biotechnol Bioproc E 15, 407–413 (2010). https://doi.org/10.1007/s12257-009-3037-9

Download citation

Keywords

  • fenugreek galactomannan
  • diabetes
  • lipase
  • disaccharidases
  • drugs