Skip to main content
Log in

Methacryloylamidohistidine in affinity ligands for immobilized metal-ion affinity chromatography of ferritin

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A new metal-chelate adsorbent utilizing 2-methacryloylamidohistidine (MAH) was prepared as a metalchelating ligand. MAH was synthesized using methacryloly chloride and histidine. Monosize nanospheres with an average diameter of 450 nm were produced by emulsion polymerization of 2-hydroxyetylmethacrylate (HEMA) and MAH. Then, Fe3+ ions were chelated directly onto the monosize nanospheres. Mon-poly(HEMA-MAH) nanospheres were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and elemental analysis. Fe3+ chelated monosize nanospheres were used in ferritin adsorption from an aqueous solution. The maximum ferritin adsorption capacity of Fe3+-chelated mon-poly(HEMAMAH) nanospheres was 202 mg/g at pH 4.0 in acetate buffer. The non-specific ferritin adsorption on the monpoly( HEMA-MAH) nanospheres was 20 mg/g. The adsorption behavior of ferritin could be modeled using both Langmuir and Freundlich isotherms. The adsorption capacity decreased with increasing ionic strength of the binding buffer. High desorption ratios (> 95% of the adsorbed ferritin) were achieved with 1.0 M NaCl at pH 7.0. Ferritin could be repeatedly adsorbed and desorbed with the Fe3+-chelated mon-poly(HEMA-MAH) nanospheres without significant loss of adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Safarik, I. and M. Safarikova (2004) Magnetic techniques for the isolation and purification of proteins and peptides. Biomagnetic Res. Technol. 2: 7.

    Article  Google Scholar 

  2. Karataş, M., S. Akgöl, H. Yavuz, R. Say, and A. Denizli (2007) Immunoglobulin G depletion from human serum with metal-chelated beads under magnetic field. Int. J. Biol. Macromol. 40: 254–260.

    Article  Google Scholar 

  3. Porath, J., J. Carlsson, I. Olsson, and G. Belfrage (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258: 598–599.

    Article  CAS  Google Scholar 

  4. Gupta, M. N., S. Jain, and I. Roy (2002) Immobilized metal affinity chromatography without chelating ligands: Purification of soybean trypsin inhibitor on Zinc alginate beads. Biotechnol. Prog. 18: 78–81.

    Article  CAS  Google Scholar 

  5. Ivanov, A. E., I. Y. Galaev, S. V. Kazakov, and B. Mattiasson (2001) Thermosensitive copolymers of N-vinylimidazole as displacers of proteins in immobilised metal affinity chromatography. J. Chromatography A. 907: 115–130.

    Article  CAS  Google Scholar 

  6. Abudiab, T. and R. R. Beitle (1998) Preparation of magnetic immobilized metal affinity separation media and its use in the isolation of proteins. J. Chromatography A. 795: 211–217.

    Article  CAS  Google Scholar 

  7. Kim, Y. J. (1999) Optimized operating parameters for the displacement separation of biomolecules in immobilized metal ion affinity chromatography. Biotechnol. Techniq. 13: 837–842.

    Article  CAS  Google Scholar 

  8. Akgöl, S., N. ztürk, and A. Denizli (2008) Dye affinity hollow fibers for β-casein. React. Function. Polym. 68: 225–232.

    Article  Google Scholar 

  9. Akgöl, S., N. Bereli, and A. Denizli (2005) Magnetic dye affinity beads for the adsorption of beta-casein. Macromol. Biosci. 5: 786–794.

    Article  Google Scholar 

  10. Çanak Y., S. Özkara, S. Akgöl, and A. Denizli (2004) Pseudospecific biochromatography of immunoglobulin G. React. Function. Polym. 61: 369–377.

    Article  Google Scholar 

  11. Yavuz, H., M. Odaba, S. Akgöl, and A. Denizli (2005) Immobilized metal affinity beads for ferritin adsorption. J. Biomat. Sci. Polym. Edition. 16: 673–684.

    Article  CAS  Google Scholar 

  12. Sarı, M., A. Akgöl, M. Karataı, and A. Denizli (2006) Reversible immobilization of catalase by metal chelate affinity interaction on magnetic beads. Ind. Eng. Chem. Res. 45: 3036–3043.

    Article  Google Scholar 

  13. Akgöl, S., N. Öztürk, A. A. Karagözler, D. A. Uygun, M. Uygun, and A. Denizli (2008) A new metal-chelated beads for reversible use in uricase adsorption. J. Mol. Catal. B: Enzy. 51: 36–41.

    Article  Google Scholar 

  14. Porath, J. (1992) Immobilized metal ion affinity chromatography. Protein Express. Purif. 3: 263–281.

    Article  CAS  Google Scholar 

  15. Ueda, E. K. M., P. W. Gout, and L. Morganti (2003) Current and prospective applications of metal ion-protein binding. J. Chromatography A. 988: 1–23.

    Article  CAS  Google Scholar 

  16. Gaberc-Porekar, V. and V. Menart (2005) Potential for using histidine tags in purification of proteins at large scale. Chem. Eng. Technol. 28: 1306–1314.

    Article  CAS  Google Scholar 

  17. Ribeiro, M. B., M. Vijayalakshmi, D. Todorova-Balvay, and S. M. A. Bueno (2008) Effect of IDA and TREN chelating agents and buffer systems on the purification of human IgG with immobilized nickel affinity membranes. J. Chromatograp. B. 861: 64–73.

    Article  CAS  Google Scholar 

  18. David, A. E., N. S. Wang, V. C. Yang, and A. J. Yang (2006) Chemically surface modified gel (CSMG): An excellent enzymeimmobilization matrix for industrial processes. J. Biotechnol. 125: 395–407.

    Article  CAS  Google Scholar 

  19. Akgöl, S., N. Tüzmen and A. Denizli (2007) Porous dye affinity beads for albumin separation from human plasma. J. Appl. Polym. Sci. 105: 1251–1260.

    Article  Google Scholar 

  20. Wu, J., M. Luan, and J. Zhao (2006) Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads. Int.J. Biol.l Macromol. 39: 185–191.

    Article  CAS  Google Scholar 

  21. Öztürk, N., M. Arýsoy S. Akgöl, and A. Denizli (2007) Reversible adsorption of lipase on novel hydrophobic nanospheres. Sep. Purif. Technol. 58: 83–90.

    Article  Google Scholar 

  22. San-Marina, S. and D. M. Nicholls (1995) Metal binding and ferritin immunoreactivity in a high molecular weight fraction from rat brain. Biochimica et Biophysica Acta (BBA) — Mol. Cell Res. 1310: 277–283.

    Article  Google Scholar 

  23. Theil, E. C. (1987) Ferritin: Structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 56: 289–315.

    Article  CAS  Google Scholar 

  24. Hynes, M. J. and M. O’Coinceanainn (2004) The kinetics and mechanisms of reactions of iron(III) with caffeic acid, chlorogenic acid, sinapic acid, ferulic acid and naringin. J. Inorganic Biochem. 98: 1457–1464.

    Article  CAS  Google Scholar 

  25. Caruso, F., D. N. Furlong, and P. Kingshott (1997) Characterization of ferritin adsorption onto gold. J. ColloidInterf. Sci. 186: 129–140.

    Article  CAS  Google Scholar 

  26. Bradford, M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  27. Rauf, M. A., S. B. Bukallah, F. A. Hamour, and A. S. Nasir (2007) Adsorption of dyes from aqueous solutions onto sand and their kinetic behavior. Chem. Eng. J. 137: 238–243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Akgöl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uygun, D.A., Öztürk, N., Akgöl, S. et al. Methacryloylamidohistidine in affinity ligands for immobilized metal-ion affinity chromatography of ferritin. Biotechnol Bioproc E 16, 173–179 (2011). https://doi.org/10.1007/s12257-009-0162-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0162-4

Keywords

Navigation