Skip to main content
Log in

Monitoring of E. coli immobilization on modified gold electrode: A new bacteria-based glucose sensor

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Electrochemical impedance spectroscopy (EIS) technique has proved to be an effective method for monitoring the immobilization of various bioactive species such as enzymes, DNA, whole cells, and so forth. In this work we describe the development of an electrochemical whole cell based biosensor. Biotinylated fluorescent E. coli are immobilized onto a cysteamine, Sulfo-NHS-LC-biotin, and avidin modified gold electrodes. Immobilized bacteria are clearly observed using confocal microscopy. Electrochemical measurements are based on the charge-transfer kinetics of [Fe (CN)6]3−/4− redox couple. The experimental impedance data were modelised with a computer. SAM assembly and the subsequent immobilization of bacteria on the gold bare electrodes greatly increased the electrontransfer resistance (R et ) and reduced the constant phase element (CPE). It’s interesting to note, the hard immobilization of bacteria on the surface of electrode and do not remove during measurements. The effect of glucose addition was studied in the range of 10−7 μM to 10 μM. The relation between the evolution of R et and D-glucose concentration was found to be linear for values ranging from 10−5 μM to 10−1 μM and reached saturation for higher concentrations. Such biosensor could be applied to a more fundamental study of cell metabolism and drugs effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sungbo, C. and T. Hagen (2007) Micro hole-based cell chip with impedance spectroscopy. Biosens. Bioelectron. 22: 1764–1768.

    Article  Google Scholar 

  2. Thedinga, E., A. Kob, H. Holst, A. Keuer, S. Drechsler, R. Niendorf, W. Baumann, I. Freund, M. Lehmann, and R. Ehret (2007) Online monitoring of cell metabolism for studying pharmacodynamic effects. Toxicol. Appl. Pharmacol. 220: 33–44.

    Article  CAS  Google Scholar 

  3. Junter, G. A. and T. Jouenne (2004) Immobilized viable microbial cells: from the process to the proteome or the cart before the horse. Biotech. Advances 22: 633–658.

    Article  CAS  Google Scholar 

  4. Parvanova-Mancheva, T. and V. Beschkov (2009) Microbial denitrification by immobilized bacteria Pseudomonas denitrificans stimulated by constant electric field. Biochem. Eng. J. 44: 208–213.

    Article  CAS  Google Scholar 

  5. Corbisier, P., D. Van Der Lelie, B. Borremans, A. Provoost, V. De Lorenzo, N. L. Brown, J. R. Lloyd, J. L. Hobman, E. Csoregi, G. Johansson, and B. Mattiasson (1999) Whole cell-and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Analytica. Chimica. Acta. 387: 235–244.

    Article  CAS  Google Scholar 

  6. Fernandez Degiorgi, C., R. A. Pizarro, E. E. Smolko, S. Lora, and M. Carenza (2002) Hydrogels for immobilization of bacteria used in the treatment of metal-contaminated wastes. Radiat. Physis. Chem. 63: 109–113.

    Article  CAS  Google Scholar 

  7. Hofmann, M. C., D. Ellersiek, F. Kensy, J. Büchs, W. Mokwa, and U. Schnakenberg (2005) Galvanic decoupled sensor for monitoring biomass concentration during fermentation processes. Sens. Actua. B 111–112: 370–375.

    Article  Google Scholar 

  8. Vitalii, S., W. Howard, and V. J. David (1997) SPR Studies of the non-specific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayer (SAMs). J. Colloid Interface Sci. 185: 94–103.

    Article  Google Scholar 

  9. Corbisier, P., E. Thiry, and L. Diels (1996) Bacterial biosensors for the toxicity assessment of solid wastes. Environ. Toxicol. Water Qual. 11: 171–177.

    Article  CAS  Google Scholar 

  10. Prime, K. L. and G. M. Whitesides (1993) Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers. J. Am. Chem. Soc. 115: 10714–10721.

    Article  CAS  Google Scholar 

  11. Choi, S. H., J. W. Lee, and S. J. Sim (2005) Enhanced performance of a surface plasmon resonance immunosensor for detecting Ab-GAD antibody based on the modified self-assembled monolayer. Biosens. Bioelectron. 21: 378–383.

    Article  CAS  Google Scholar 

  12. Delamarche, E., B. Michel, C. Gerber, D. Anselmetti, H. J. Guentherod, H. Wolf, and H. Ringsdorf (1994) Real-space observation of nanoscale molecular domains in self-assembled monolayers. Langmuir 10: 2869–2871.

    Article  CAS  Google Scholar 

  13. Mrksich, M., L. E. Dike, J. Tien, D. E. Ingber, and G. M. Whitesides (1997) Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp. Cell. Res. 235: 305–313.

    Article  CAS  Google Scholar 

  14. Choi, J. W., K. W. Park, D. B. Lee, W. Lee, and W. H. Lee (2005) Cell immobilization using self-assembled synthetic oligopeptide and its application to biological toxicity detection using surface plasmon resonance. Biosens. Bioelectron. 20: 2300–2305.

    Article  CAS  Google Scholar 

  15. Van Hamersveld, E. H., R. G. J. M. van der Lans, and K. C. A. M. Luyben (1997) Quantification of brewers’ yeast flocculation in a stirred tank: Effect of physical parameters on flocculation. Biotechnol. Bioeng. 56: 190–200.

    Article  Google Scholar 

  16. Wilchek, M. and E. A. Bayer (1988) The avidin-biotin complex in bioanalytical applications. Anal. Biochem. 171: 1–32.

    Article  CAS  Google Scholar 

  17. Malaquin, L., C. Vieu, M. Genevieve, Y. Tauran, F. Carcenac, M. L. Pourciel, V. Leberre, and E. Trévisiol (2004) Nanoelectrode-based devices for electrical biodetection in liquid solution. Microelec. Eng. 73–74: 887–892.

    Article  Google Scholar 

  18. Jaffrezic-Renault, N. (2001) New trends in biosensors for organophosphorus pesticides. Sensors 1: 60–74.

    Article  Google Scholar 

  19. Gu, H. Y., A. M. Yu, and H. Y. Chen (2001) Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine modified gold electrode. J. Electroananl. Chem. 516: 119–126.

    Article  CAS  Google Scholar 

  20. Chaki, N. K. and K. Vijayamohanan (2002) Self-assembled monolayers as a tunable platform for biosensor applications. Biosens. Bioelectron. 17: 1–12.

    Article  CAS  Google Scholar 

  21. Tan, J. L., J. Tien, and C. S. Chen (2002) Microcontact printing of proteins on mixed self-assembled monolayers. Langmuir 18: 519–523.

    Article  CAS  Google Scholar 

  22. Wink, T., S. J. van Zuilen, A. Bult, and W. P. van Bennekom (1997) Self-assembled monolayers for biosensors. Analyst. 122: 43–50.

    Article  Google Scholar 

  23. Riklin, A. and I. Willner (1995) Glucose and acetylcholine sensing multiplayer enzyme electrodes of controlled enzyme layer thickness. Anal. Chem. 67: 4118–4126.

    Article  CAS  Google Scholar 

  24. Wang, C. C., H. Wang, Zh. Y. Wu, G. L. Shen, and R. Q. Yu (2002) A piezoelectric immunoassay based on self assembled monolayers of cystamine and polystyrene sulfonate for determination of schistosoma japonicum antibodies. Anal. Bioanal. Chem. 373: 803–809.

    Article  CAS  Google Scholar 

  25. Haugland, R. P. and W. W. You (1995) Coupling of monoclonal antibodies with biotin. Methods Mol. Biol. 45: 223–233.

    CAS  Google Scholar 

  26. Spinke, J., M. Liley, F. J. Schmitt, H. J. Guder, L. Angermaier, and W. Knoll (1993) Molecular recognition at self-assembled monolayers: Optimization of surface functionalization. J. Chem. Phys. 99: 7012–7019.

    Article  CAS  Google Scholar 

  27. Vidal, O., R. Longin, C. Prigent-Combaret, C. Dorel, M. Hooreman, and P. Lejeune (1998) Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J. Bacteriol. 180: 2442–2449.

    CAS  Google Scholar 

  28. Navratilova, I. and P. Skladal (2004) The immunosensors for measurement of 2,4-dichlorophenoxacetic acid based on electrochemical impedance spectroscopy. Bioelectrochemistry 62: 11–18.

    Article  CAS  Google Scholar 

  29. Wang, M., L. Wang, G. Wang, X. Ji, Y. Bai, T. Li, S. Gong, and J. Li (2004) Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody-antigen reaction. Biosens. Bioelectron. 19: 575–582.

    Article  CAS  Google Scholar 

  30. Cui, X., D. Jiang, P. Diao, J. Li, R. Tong, and X. Wang (1999) Assessing the apparent effective thickness of alkanethiol self-assembled monolayers in different concentrations of Fe(CN)6 3−/Fe(CN)6 4− by ac impedance spectroscopy. J. Electroanal. Chem. 470: 9–13.

    Article  CAS  Google Scholar 

  31. Darain, F., D. S. Park, and Y. B. Shim (2004) Development of an immunosensor for the detection of vitellogenin using impedance spectroscopy. Biosens. Bioelectron. 19: 1245–1252.

    Article  CAS  Google Scholar 

  32. Yang, L., Y. Li, and G. F. Erf (2004) An integrated array microelectrode-based electrophoresis impedance immunosensor for rapid detection of Escherichia coli O157:H7. Anal. Chem. 76: 1107–1113.

    Article  CAS  Google Scholar 

  33. Markovich, I. and D. Mandler (2000) The effect of an alkylsilane monolayer on an indium-tin oxide surface on the electrochemistry of hexacyanoferrate. J. Electroanal. Chem. 484: 194–202.

    Article  CAS  Google Scholar 

  34. Macdonald J. R. (1992) Impedance spectroscopy. Annals of Biomedical Engineering, 20: 289–305.

    Article  CAS  Google Scholar 

  35. Garcia-Belmonte, G., Z. Pomerantz, J. Bisquert, J. P. Lellouche, and A. Zaban (2004) Analysis of ion diffusion and charging in electronically conducting polydicarbazole films by impedance methods. Electrochim. Acta. 49: 3413–3417.

    Article  CAS  Google Scholar 

  36. Yang, L., C. Ruan, and Y. Li (2003) Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosens. Bioelectron. 19: 495–502.

    Article  CAS  Google Scholar 

  37. Munoz-Berbel, X., N. Viguès, J. Mas, A. Toby, A. Jenkins, and Francisco J. Munoz (2007) Impedimetric characterization of the changes produced in the electrode-solution interface by bacterial attachment. Electrochem. Commun. 9: 2654–2660.

    Article  CAS  Google Scholar 

  38. Luong, J. H. T., M. Habibi-Rezaei, J. Meghrous, C. Xiao, K. B. Male, and A. Kamen (2001) Monitoring motility, spreading, and mortality of adherent insect cells using an impedance sensor. Anal. Chem. 73: 1844–1848.

    Article  CAS  Google Scholar 

  39. Savitri, D. and C. K. Mitra (1999) Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance measurements. Bioelectrochem. Bioenerg. 48: 163–169.

    Article  CAS  Google Scholar 

  40. Ruan, C. M., L. J. Yang, and Y. B. Li (2002) Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Anal. Chem. 74: 4814–4820.

    Article  CAS  Google Scholar 

  41. Tlili, C., K. Reybier, A. Géloën, L. Ponsonnet, C. Martelet, H. Ben Ouada, M. Lagarde, and N. Jaffrezic-Renault (2003) Fibroblast cells: A sensing bioelement for glucose detection by impedance spectroscopy. Anal. Chem. 75: 3008–3012.

    Article  Google Scholar 

  42. Kong, T., Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang (2009) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sen. Actuat. B: Chem. 138: 344–350.

    Article  Google Scholar 

  43. Santhosh, P., K. M. Manesh, S. Uthayakumar, S. Komathi, A. I. Gopalan, and K. P. Lee (2009) Fabrication of enzymatic glucose biosensor based on palladium nanoparticles dispersed onto poly(3,4-ethylenedioxythiophene) nanofibers. Bioelectrochemistry 75: 61–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Othmane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borghol, N., Mora, L., Jouenne, T. et al. Monitoring of E. coli immobilization on modified gold electrode: A new bacteria-based glucose sensor. Biotechnol Bioproc E 15, 220–228 (2010). https://doi.org/10.1007/s12257-009-0146-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0146-4

Keywords

Navigation