Skip to main content

Influence of pH on the culture of Scenedesmus obliquus in olive-mill wastewater

Abstract

Olive-mill wastewater (OMW), an agro-industrial by-product from olive-oil milling (with the three-phase extraction method), was used experimentally as 5% (v/v) of the medium to culture Scenedesmus obliquus CCAP 276/3A. The characterization of the wastewater indicated a nitrogen deficiency. The highest specific growth rate of S. obliquus μm = 0.022 h−1 was found when the medium was maintained at a constant pH value of 7.0. The biomass productivity, Pb was determined by the influence of pH on the speciation of the dissolved CO2. The greatest elimination of BOD5 occurred at extreme pH values. The protein and chlorophyll contents presented a maximum value close to pH = 7.0. The highest crude-protein content in the biomass was 25.6%. The polyunsaturated and essential fatty acids presented a clear trend to increase with the pH, at pH 9.0, representing 26.2 and 19.4%, respectively, of the total fatty-acid content of the biomass.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Hodaifa, G. (2004) Aprovechamiento de las aguas residuales de la industria oleícola en la producción de biomasa de microalgas. Ph.D. Thesis, Jaén University, Spain.

    Google Scholar 

  2. 2.

    Paredes, C., A. Cegarra, A. Roig, M. A. Sánchez-Monedero, and M. P. Bernal (1999) Characterization of olive mill wastewater (alpechín) and its sludge for agricultural purposes. Bioresour. Technol. 67: 111–115.

    Article  CAS  Google Scholar 

  3. 3.

    Hodaifa, G., M. E. Martínez, and S. Sanchez (2008) Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour. Technol. 99: 1111–1117.

    Article  CAS  Google Scholar 

  4. 4.

    Borowitzka, M. A. (1999) Commercial production of microalgae: ponds, tanks, tubes, and fermenters. J. Biotechnol. 70: 313–321.

    Article  CAS  Google Scholar 

  5. 5.

    Cohen, Z. (1997) The chemicals of Spirulina. pp. 175–204. In: A. Vonshak (ed.) Spirulina platensis (Arthrospira): Physiology, Cell-Biology, and Biotechnology. Taylor and Francis, London, UK.

    Google Scholar 

  6. 6.

    Becker, E. W. (1993) Development of Spirulina research in a developing country India. Bulletin de I’Institut Oceanograhique 12: 65–75.

    Google Scholar 

  7. 7.

    Camacho Rubio, F., M. E. Martínez, S. Sánchez, and A. Delgado Perez (1989) Influence of pH on the kinetic and yield parameters of Scenedesmus obliquus heterotrophic growth. Process Biochem. 24: 133–136.

    CAS  Google Scholar 

  8. 8.

    Stumm, W. and J. J. Morgan (1981) Aquatic chemistry: an introduction emphasizing chemical equilibrium in natural waters. 2nd ed., pp. 1–780. Wiley Interscience, NY, USA.

    Google Scholar 

  9. 9.

    Raven, J. A. (1990) Sensing pH. Plant Cell Environ. 13: 721–729.

    Article  CAS  Google Scholar 

  10. 10.

    Rodríguez-López, M. (1964) Influence of the inoculum and the medium on the growth of Chlorella pyrenoidosa. Nature 203: 666–667.

    Article  Google Scholar 

  11. 11.

    Jeffrey, S. W. and G. F. Humphrey (1975) New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae, and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191–194.

    CAS  Google Scholar 

  12. 12.

    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  13. 13.

    Lepage, G. and C. C. Roy (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25: 1391–1396.

    CAS  Google Scholar 

  14. 14.

    Bailey, J. E. and D. F. Ollis (1977) The kinetics of enzyme-catalyzed reactions. pp. 223–233. In: J. E. Bailey and D. F. Ollis (eds.). Biochemical Engineering Fundamentals. McGraw-Hill, NY, USA.

    Google Scholar 

  15. 15.

    Wijtzes, T., J. C. de Wit, J. H. J. Huis, K. Riet, and M. H. Zwietering (1995) Modelling bacterial growth of Lactobacillus curvatus as a function of acidity and temperature. Appl. Environ. Microbiol. 61: 2533–2539.

    CAS  Google Scholar 

  16. 16.

    Goldman, J. C., M. R. Dennett, and C. B. Riley (1982) Effect of nitrogen-mediated changes in alkalinity on pH control and CO2 supply in intensive microalgal cultures. Biotechnol. Bioeng. 24: 619–631.

    Article  CAS  Google Scholar 

  17. 17.

    Martínez, M. E., S. Sánchez, M. J. Jiménez, F. El Yousfi, and L. Muñoz (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 73: 263–272.

    Article  Google Scholar 

  18. 18.

    Fiesta, J. A. (1986) Current status of research and technology concerning the problems posed by vegetation water. Proc. International Symposium on Olive Byproducts Valorization. FAO, UNDP, 11–15. Seville, Spain.

  19. 19.

    Evers, E. G. (1991) A model for light-limited continuous cultures: growth, shading, and maintenance. Biotechnol. Bioeng. 38: 254–259.

    Article  CAS  Google Scholar 

  20. 20.

    Goldman, J. C., M. R. Dennett, and G. B. Riley (1981) Inorganic carbon sources and biomass regulation in intensive microalgal cultures. Biotechnol. Bioeng. 23: 995–1014.

    Article  CAS  Google Scholar 

  21. 21.

    Azov, Y. (1982) Effect of pH on inorganic carbon uptake in algal cultures. Appl. Env. Microbiol. 43: 1300–1306.

    CAS  Google Scholar 

  22. 22.

    Nalewajko, C., B. Colman, and M. Olaveson (1997) Effects of pH on growth, photosynthesis, respiration, and copper tolerance of three Scenedesmus strains. Environ. Exp. Bot. 37: 153–160.

    Article  CAS  Google Scholar 

  23. 23.

    Lane, A. E. and J. E. Burris (1981) Effects of environmental pH on internal pH of Chlorella pyrenoidosa, Scenedesmus quadricauda, and Euglena mutabilis. Plant Physiol. 68: 439–442.

    Article  CAS  Google Scholar 

  24. 24.

    Droop, M. R. (1974) The nutrient status of algal cells in continuous culture. J. Mar. Biol. Ass. UK 54: 825–855.

    Article  CAS  Google Scholar 

  25. 25.

    Bronk, D. A., J. H. See, P. Bradley, and L. Killberg (2007) DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences 4: 283–296.

    CAS  Article  Google Scholar 

  26. 26.

    Sánchez, S., M. E. Martínez, M. T. Espejo, R. Pacheco, F. Espinola, and G. Hodaifa (2001) Mixotrophic culture of Chlorella pyrenoidosa with olive-mill wastewater as nutrient medium. J. Appl. Phycol. 13: 443–449.

    Article  Google Scholar 

  27. 27.

    Becker, E. W. (1994) Microalgae. pp. 9–41. In: E. W. Becker (ed.). Biotechnology and Microbiology. Cambridge University Press, NY, USA.

    Google Scholar 

  28. 28.

    Endo, H., K. Nakajima, R. Chino, and M. Shirota (1974) Growth characteristics and components of Chlorella regularis, heterotrophic fast growing strain. Agri. Bio. Chem. 38: 9–18.

    Google Scholar 

  29. 29.

    Milner, H. W. (1953) The chemical composition of algae. pp. 285–302. In: J. S. Burlew (ed.). Algal Culture from Laboratory to Pilot Plant. Carnegie Institution of Washington Publication, Washington, DC, USA.

    Google Scholar 

  30. 30.

    Castell, J. D. (1979) Review of lipid requirement of finfish. pp. 241–251. In: J. E. Halver and K. Tiews (eds.). Finfish Nutrition and Fish Feed Technology. Heenemann Verlagsgesellschaft mbH, Berlin.

    Google Scholar 

  31. 31.

    Yongmanitchai, W. and O. P. Ward (1991) Growth and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl. Environ. Microbiol. 57: 419–425.

    CAS  Google Scholar 

  32. 32.

    Webb, K. L. and F. L. Chu (1982) Phytoplankton as a food for bivalve larvae. pp. 272–291. In: G. D. Pruder, C. J. Langdon, and D. E. Conklin (eds.). Biochemical and Physiological Approaches to Shellfish Nutrition. Louisiana State University Press, Baton Rouge, LA, USA.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gassan Hodaifa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hodaifa, G., Martínez, M.E. & Sánchez, S. Influence of pH on the culture of Scenedesmus obliquus in olive-mill wastewater. Biotechnol Bioproc E 14, 854–860 (2009). https://doi.org/10.1007/s12257-009-0119-7

Download citation

Keywords

  • microalgae
  • Scenedesmus obliquus
  • olive-mill wastewater
  • Growth kinetics
  • biochemical composition
  • fatty acids