Skip to main content
Log in

Determination of fungal glucosamine using HPLC with 1-napthyl isothiocyanate derivatization and microwave heating

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A rapid method for the determination of fungal glucosamine (GlcN) from Aspergillus sp BCRC 31742 was developed. The hydrochlorination process using microwave effectively reduced reaction time needed for GlcN analysis. The analytical method consisted of two steps: (1) hydrochlorination of fungal cells and (2) derivatization process. Fungal GlcN hydrochloride was reacted with 1-napthyl isothiocyanate (1-NITC) as the derivatizing agent to enhance the sensitivity of GlcN and so to achieve high resolution. This method was specific for quantification of GlcN hydrochloride at the wavelength of 230 nm. The standard deviation and relative error of the analytical results were less than 5%. By using microwave heating, the reaction time of hydrochlorination process was shortened from 24 h to 3 min. Thus, the overall time needed for analyzing GlcN from fungal sources was reduced from 5 h (thermal method) to 2 h (microwave method).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hsieh, J. W., H. S. Wu, Y. H. Wei, and S. S. Wang (2007) Determination and kinetics of producing glucosamine using fungi. Biotechnol. Prog. 23: 1009–1016.

    CAS  Google Scholar 

  2. Nwe, N. and W. F. Stevens (2004) Effect of urea on fungal chitosan production in solid substrate fermentation. Process Biochem. 39: 1639–1642.

    Article  CAS  Google Scholar 

  3. Nwe, N. and W. F. Stevens (2002) Production of fungal chitosan by solid substrate fermentation followed by enzymatic extraction. Biotechnol. Lett. 24: 131–134.

    Article  CAS  Google Scholar 

  4. Chen, W. and R. Y. Y. Chiou (1999) A modified chemical procedure for rapid determination of glucosamine and its application for estimation of mold growth in peanut kernels and koji. J. Agric. Food Chem. 47: 1999–2004.

    Article  CAS  Google Scholar 

  5. Kim, W. J., W. G. Lee, K. Theodore, and H. N. Chang (2001) Optimization of culture conditions and continuous production of chitosan by the fungi, Absidia coerulea. Biotechnol. Bioprocess Eng. 6: 6–10.

    Article  CAS  Google Scholar 

  6. Sumbali, G. (2005) The fungi. 1st ed., pp. 230–250. Alpha Science International Ltd, UK.

    Google Scholar 

  7. Mojarrad, J. S., M. Nemati, H. Valizadeh, M. Ansarin, and S. Bourbour (2007) Preparation of glucosamine from exoskeleton of shrimp and predicting production yield by response surface methodology. J. Agric. Food Chem. 55: 2246–2250.

    Article  CAS  Google Scholar 

  8. Anderson, J. W., R. J. Nicolosi, and J. F. Borzelleca (2005) Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations, and efficacy. Food Chem. Toxicol. 43: 187–201.

    Article  CAS  Google Scholar 

  9. Jung, W. J., G. H. Jo, J. H. Kuk, K. Y. Kim, and R. D. Park (2005) Demineralization of crab shells by chemical and biological treatments. Biotechnol. Bioprocess Eng. 10: 67–72.

    Article  CAS  Google Scholar 

  10. Yu, K. W., Y. S. Kim, K. S. Shin, J. M. Kim, and H. J. Suh (2005) Macrophage stimulating activity of exobiopolymer from cultured rice bran with Monascus pilosus. Appl. Biochem. Biotechnol. 126: 35–48.

    Article  CAS  Google Scholar 

  11. Ruiz-Teran, F. and J. D. Owens (1996) Chemical enzymatic changes during the fermentation of bacteria-free soya bean tempe. J. Sci. Food Agric. 71: 523–530.

    Article  CAS  Google Scholar 

  12. Carter, S. B., S. E. Nokes, and C. L. Crofcheck (2004) The influence of environmental temperature and substrate initial moisture content on Aspergillus niger growth and phytase production in solid state cultivation. Trans. Americ. Soc. Agric. Eng. 47: 945–949.

    CAS  Google Scholar 

  13. Pochanavanich, P. and W. Suntornsuk (2002) Fungal chitosan production and its characterization. Lett. Appl. Microbiol. 35: 17–21.

    Article  CAS  Google Scholar 

  14. Chatterjee, S., M. Adhya, A. K. Guha, and B. P. Chatterjee (2005) Chitosan from Mucor rouxii: production and physico-chemical characterization. Process Biochem. 40: 395–400.

    Article  CAS  Google Scholar 

  15. Liu, Y., W. Liao, and S. Chen (2008) Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose. J. App. Microbiol. 105: 1521–1528.

    Article  CAS  Google Scholar 

  16. Sparringa, R. A. and J. D. Owens (1999) Short communication: Glucosamine content of tempe mould, Rhizopus oligosporus. Int. J. Food Microbiol. 47: 153–157.

    Article  CAS  Google Scholar 

  17. Wagner, W. D. (1979) A more sensitive assay discriminating galactosamine and glucosamine in mixtures. Anal. Biochem. 94: 394–396.

    Article  CAS  Google Scholar 

  18. Setnikar. I., C. Giachetti, and G. Zanolo (1984) Absorption, distrubition, and excretion of radioactivity after a single intravenous or oral administration of [14C] glucosamine to the rat. Pharmatherapeutica 3: 538–550.

    CAS  Google Scholar 

  19. Shinohara, T. (1981) Use of a flame fherminoic detector in the determination of glucosamine and galactosamine in glycoconjugates by gas chromatography. J. Chromatogr. 2: 262–267.

    Article  Google Scholar 

  20. Guttman, A. (1997) Analysis of monosaccharide composition by capillary electophoresis. J. Chromatogr. A. 763: 271–277.

    Article  CAS  Google Scholar 

  21. Zamani, A., A. Jeihanipour, L. Edebo, C. Niklasson, and M. J. Taherzadeh (2008) Determination of glucosamine and N-Acetyl glucosamine in fungal cell walls. J. Agric. Food Chem. 56: 8314–8318.

    Article  CAS  Google Scholar 

  22. Cai, J., J. Yang, Y. Du, L. Fan, Y. Qiu, J. Li, and J. F. Kennedy (2006) Enzymatic preparation of chitosan from the waste Aspergillus niger mycelium of citric acid production plant. Carbohydr. Polym. 64: 151–157.

    Article  CAS  Google Scholar 

  23. Nwe, N., W. F. Stevens, S. Tokura, and H. Tamura (2008) Characterization of chitosan and chitosan-glucan complex extracted from the cell wall of fungus Gongronella butleri USDB 0201 by enzymatic method. Enz. Microb. Technol. 42: 242–251.

    Article  CAS  Google Scholar 

  24. White, S. A., P. R. Farina, and I. Fulton (1979) Production and isolation of chitosan from Mucor rouxii. Appl. Environ. Microbiol. 32: 323–328.

    Google Scholar 

  25. Hu, K. J., J. L. Hu, K. P. Ho, and K. W. Yeung (2004) Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials. Carbohydr. Polym. 58: 45–52.

    Article  CAS  Google Scholar 

  26. Hiroshi, M., S. Kaori, W. Kimitsuna, and O. Kazukiyo (1992) Characterization of some fungal chitosans. Biosci. Biotechnol. Biochem. 56: 1901–1905.

    Article  Google Scholar 

  27. Nwe, N., S. Chandrkrachang, W. F. Stevens, T. Maw, T. K Tan, E. Khor, and S. M. Wong (2002) Production of fungal chitosan by solid state and submerged fermentation. Carbohydr. Polym. 49: 235–237.

    Article  CAS  Google Scholar 

  28. Zhang, L. J., T. M. Huang, X. L. Fang, X. N. Li, Q. S. Wang, Z. W. Zhang, and X. Y. Sha (2006) Determination of glucosamine sulfate in human plasma by precolumn derivatization using high performance liquid chromatography with fluorescence detection: its application to a bioequivalence study. J. Chromatogr. B. 842: 8–12.

    Article  CAS  Google Scholar 

  29. Zhu, X., J. Cai, J. Yang, and Q. Su (2005) Determination of glucosamine in impure chitin samples by highperformance liquid chromatography. Carbohydr. Res. 340: 1732–1738.

    Article  CAS  Google Scholar 

  30. Liang, Z., J. Leslie, A. Adebowale, M. Ashraf, and N. D. Eddington (1999) Determination of the nutraceutical, glucosamine hydrochloride, in raw materials, dosage forms, and plasma using pre-column derivatization with ultraviolet HPLC. J. Pharm. Biomed. Anal. 20: 807–814.

    Article  CAS  Google Scholar 

  31. Huang, T. M., C. H. Deng, N. Z. Chen, Z. Liu, and G. L. Duan (2006) High performance liquid chromatography for the determination of glucosamine sulfate in human plasma after derivatization with 9-fluorenylmethyl chloroformate. J. Sep. Sci. 29: 2296–2302.

    Article  CAS  Google Scholar 

  32. Zhou, J. Z., T. Waszkuc, and F. Mohammed (2005) Determination of glucosamine in raw materials and dietary supplements containing glucosamine sulfate and/or glucosamine hydrochloride by high performance liquid chromatography with FMOC-Su derivatization: collaborative study. J. AOAC. Int. 88: 1048–1058.

    CAS  Google Scholar 

  33. Diaz, J., J. L. Lliberia, L. Comellas, and F. B. Puig (1996) Amino acid and amino sugar determination by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate followed by high-performance liquid chromatography and fluorescence detection. J. Chromatogr. A. 719: 171–179.

    Article  CAS  Google Scholar 

  34. Aghazadeh-Habashi, A., S. Sattari, F. Pasutto, and F. Jamali (2002) High performance liquid chromatographic determination of glucosamine in rat plasma. J. Pharm. Pharmaceut. Sci. 5: 176–180.

    CAS  Google Scholar 

  35. Polshettiwar, V. and R. S. Varma (2007) Greener and sustainable approaches to the synthesis of pharmaceutically active heterocycles. Curr. Opin. Drug Discovery Dev. 10: 723–737.

    CAS  Google Scholar 

  36. Kappe, C. O. (2002) High-speed combinatorial synthesis utilizing microwave irradiation. Curr. Opin. Chem. Biol. 6: 314–320.

    Article  CAS  Google Scholar 

  37. Polshettiwar, V. and R. S. Varma (2008) Microwaveassisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res. 41: 629–639.

    Article  CAS  Google Scholar 

  38. Zhao, Y. F. and J. Chen (2008) Applications of microwaves in nuclear chemistry and engineering. Pro. Nucl. Energy 50: 1–6.

    Article  CAS  Google Scholar 

  39. Bykov, Y. V., K. I. Rybakov, and V. E. Semenov (2001) High-temperature microwave processing of materials. Appl. Phys. 34: 55–75.

    Google Scholar 

  40. Cao, L., Y. Jiang, Y. Yu, X. Wei, and W. Li (2008) Methods for producing glucosamine from microbial biomass. US Patent 0,188,649 A1.

  41. Way, W. K., K. G. Gibson, and A. G. Breite (2000) Determination of glucosamine in nutritional supplements by reversed-phase ion-pairing HPLC. J. Liq. Chromatogr. Rel. Technol. 23: 2861–2871.

    Article  CAS  Google Scholar 

  42. Anumula, K. R. and P. B. Taylor (1991) Quantitative determination of phenyl isothiocyanate-derivatized amino sugars and amino sugar alcohols by high-performance liquid chromatography. Anal. Biochem. 197: 113–120.

    Article  CAS  Google Scholar 

  43. Altmann, F. (1992) Determination of amino sugars and amino acids in glycoconjugates using precolumn derivatization with o-phthalaldehyde. Anal. Biochem. 204: 215–219.

    Article  CAS  Google Scholar 

  44. Hagen, S. R. (1993) High-performance liquid chromatographic quantitation of phenylthiocarbamyl muramic acid and glucosamine from bacterial cell walls. J. Chromatogr. A. 632: 63–68.

    Article  CAS  Google Scholar 

  45. Bindlingmeyer, B. A., S. A. Cohen, and T. L. Tarvin (1984) Rapid analysis of amino acids using precolumn derivitization. J. Chromatogr. 336: 93–104.

    Article  Google Scholar 

  46. Spiro, M. J. and R. G. Spiro (1992) Monosaccharide determination of glycoconjugates by reverse phase highperformance liquid chromatography of their phenylthiocarbamyl derivatives. Anal. Biochem. 204: 152–157.

    Article  CAS  Google Scholar 

  47. Fu, D. and R. A. O’Neill (1995) Monosaccharide composition analysis of oligosaccharides and glycoproteins by High-Pressure Liquid Chromatography. Anal. Biochem. 227: 377–384.

    Article  CAS  Google Scholar 

  48. Roberts, B. A. and C. R. Strauss (2005) Toward rapid, “green”, predictable microwave-assisted synthesis. Acc. Chem. Res. 38: 653–661.

    Article  CAS  Google Scholar 

  49. Gabriel, C., S. Gabriel, E. H. Grant, and B. S. J. Halstead (1998) Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev. 27: 213–223.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Shing Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitanggang, A.B., Wu, HS. & Wang, S.S. Determination of fungal glucosamine using HPLC with 1-napthyl isothiocyanate derivatization and microwave heating. Biotechnol Bioproc E 14, 819–827 (2009). https://doi.org/10.1007/s12257-009-0105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0105-0

Keywords

Navigation