Skip to main content
Log in

Overexpression, purification, and functional characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Overexpression in Escherichia coli and functional characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 were investigated in this study. PhCpn, the chaperonin gene from the P. horikoshii OT3, was amplified by PCR from the P. horikoshii genomic DNA, subcloned into pET21a vector, and expressed in three E. coli host cells such as BL21, Rosetta, and Codonplus (DE3). Among these host cells, E. coli Rosetta showed the highest expression level of recombinant PhCpn at induction with 1 mM IPTG. The recombinant PhCpn was purified to 91% by heat-shock treatment and anion-exchange chromatography. The ATPase activity of the purified PhCpn increased in a PhCpn concentration-dependent manner. Also, PhCpn protected the inorganic phosphatase from thermal inactivation at 85 and 110°C, speculating that PhCpn is effective in in vitro holding of the protein. The holding efficiency was enhanced by the addition of Mg2+ ion. Through the coexpression of pro-carboxypeptidase B (pro-CPB) and PhCpn in E. coli Rosetta, pro-CPB was produced as a soluble and active form with a marked yield. This result indicated that PhCpn facilitated the in vivo correct folding of pro-CPB and could be used as powerful and novel molecular machinery for the production of recombinant proteins as soluble and active forms in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawarabayasi, Y., M. Sawada, H. Horikawa, Y. Haikawa, Y. Hino, S. Yamamoto, M. Sekine, S. Baba, H. Kosugi, A. Hosoyama, Y. Nagai, M. Sakai, K. Ogura, R. Otsuka, H. Nakazawa, M. Takamiya, Y. Ohfuku, T. Funahashi, T. Tanaka, Y. Kudoh, J. Yamazaki, N. Kushida, A. Oguchi, K. Aoki, and H. Kikuchi (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3 (supplement). DNA Res. 5: 147–155.

    Article  CAS  Google Scholar 

  2. Bukau, B., E. Deuerling, C. Pfund, and E. A. Craig (2000) Getting newly synthesized proteins into shape. Cell 101: 119–122.

    Article  CAS  Google Scholar 

  3. Ellis, R. J. and F. U. Hartl (1996) Protein folding in the cell: competing models of chaperonin function. FASEB J. 10: 20–26.

    CAS  Google Scholar 

  4. Ellis, R. J. (1996) The chaperonins. pp. 2–25. Academic Press, San Diego, USA

    Google Scholar 

  5. Gething, M. J. and J. Sambrook (1992) Protein folding in the cell. Nature 355: 33–45.

    Article  CAS  Google Scholar 

  6. Laksanalamai, P., T. A. Whitehead, and F. T. Robb (2004) Minimal protein-folding systems in hyperthermophilic archaea. Nat. Rev. Microbiol. 2: 315–324.

    Article  CAS  Google Scholar 

  7. Mogk, A., B. Bukau, and E. Deuerling (2001) Cellular functions of cytosolic E. coli chaperones. pp. 1–34. In: P. Lund (ed.). Molecular chaperones in the cell. Oxford University Press, Oxford, UK.

    Google Scholar 

  8. Hartl, F. U. and M. Hayer-Hartl (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852–1858.

    Article  CAS  Google Scholar 

  9. Valpuesta, J. M., J. Martin-Benito, P. Gomez-Puertas, J. L. Carrascosa, and K. R. Willison (2002) Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT. FEBS Lett. 529: 11–16.

    Article  CAS  Google Scholar 

  10. Ranson, N. A., H. E. White, and H. R. Saibil (1998) Chaperonins. Biochem. J. 333: 233–242.

    CAS  Google Scholar 

  11. Kim, S., K. R. Willison, and A. L. Horwich (1994) Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem. Sci. 19: 543–548.

    Article  CAS  Google Scholar 

  12. Kubota, H., G. Hynes, and K. Willison (1995) The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur. J. Biochem. 230: 3–16.

    Article  CAS  Google Scholar 

  13. Bukau, B. and A. L. Horwich (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–366.

    Article  CAS  Google Scholar 

  14. Yoshida, T., R. Kawaguchi, H. Taguchi, M. Yoshida, T. Yasunaga, T. Wakabayashi, M. Yohda, and T. Maruyama (2002) Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J. Mol. Biol. 315: 73–85.

    Article  CAS  Google Scholar 

  15. Phipps, B. M., D. Typke, R. Heger, S. Volker, A. Hoffmann, K. O. Stetter, and W. Baumeister (1993) Structure of a molecular chaperone from a thermophilic archaebacterium. Nature 361: 475–477.

    Article  CAS  Google Scholar 

  16. Hartl, F. U. (1996) Molecular chaperones in cellular protein folding. Nature 381: 571–579.

    Article  CAS  Google Scholar 

  17. Fenton, W. A. and A. L. Horwich (1997) GroEL-mediated protein folding. Protein Sci. 6: 743–760.

    Article  CAS  Google Scholar 

  18. Sigler, P. B., Z. Xu, H. S. Rye, S. G. Burston, W. A. Fenton, and A. L. Horwich (1998) Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 67: 581–608.

    Article  CAS  Google Scholar 

  19. Archibald, J. M., J. M. Logsdon, and W. F. Doolittle (1999) Recurrent paralogy in the evolution of archaeal chaperonins. Curr. Biol. 9: 1053–1056.

    Article  CAS  Google Scholar 

  20. Gutsche, I., L. O. Essen, and W. Baumeister (1999) Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J. Mol. Biol. 293: 295–312.

    Article  CAS  Google Scholar 

  21. Yan, Z., S. Fujiwara, K. Kohda, M. Takagi, and T. Imanaka (1997) In vitro stabilization and in vivo solubilization of foreign proteins by the subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl. Environ. Microbiol. 63: 785–789.

    CAS  Google Scholar 

  22. Kohda, J., Y. Endo, N. Okumura, Y. Kurokawa, K. Nishihara, H. Yanagi, T. Yura, H. Fukuda, and A. Kondo (2002) Improvement of productivity of active form of glutamate racemase in Escherichia coli by coexpression of folding accessory proteins. Biochem. Eng. J. 10: 39–45.

    Article  CAS  Google Scholar 

  23. Kwon, M. J., S. L. Park, S. K. Kim, and S. W. Nam (2002) Overproduction of Bacillus macerans cyclodextrin glucanotransferase in E. Coli by coexpression of GroEL/ES chaperone. J. Microbiol. Biotechnol. 12: 1002–1005.

    CAS  Google Scholar 

  24. Guagliardi, A., L. Cerchia, S. Bartolucci, and M. Rossi (1994) The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci. 3: 1436–1443.

    Article  CAS  Google Scholar 

  25. Guagliardi, A., L. Cerchia, and M. Rossi (1995) Prevention of in vitro protein thermal aggregation by the Sulfolobus solfataricus chaperonin. Evidence for nonequivalent binding surfaces on the chaperonin molecule. J. Biol. Chem. 270: 28126–28132.

    Article  CAS  Google Scholar 

  26. Furutani, M., T. Iida, T. Yoshida, and T. Maruyama (1998) Group II chaperonin in a thermophilic methanogen, Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J. Biol. Chem. 273: 28399–28407.

    Article  CAS  Google Scholar 

  27. Kusmierczyk, A. R. and J. Martin (2003) Nucleotidedependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis. Biochem. J. 371: 669–673.

    Article  CAS  Google Scholar 

  28. Yoshida, T., M. Yohda, T. Iida, T. Maruyama, H. Taguchi, K. Yazaki, T. Ohta, M. Odaka, I. Endo, and Y. Kagawa (1997) Structural and functional characterization of homo-oligomeric complexes of alpha and beta chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J. Mol. Biol. 273: 635–645.

    Article  CAS  Google Scholar 

  29. Yoshida, T., A. Ideno, S. Hiyamuta, M. Yohda, and T. Maruyama (2001) Natural chaperonin of the hyperthermophilic archaeum, Thermococcus strain KS-1: a heterooligomeric chaperonin with variable subunit composition. Mol. Microbiol. 39: 1406–1413.

    Article  CAS  Google Scholar 

  30. Yoshida, T., A. Ideno, R. Suzuki, M. Yohda, and T. Maruyama (2002) Two kinds of archaeal group II chaperonin subunits with different thermostability in Thermococcus strain KS-1. Mol. Microbiol. 44: 761–769.

    Article  CAS  Google Scholar 

  31. Izumi, M., S. Fujiwara, M. Takagi, S. Kanaya, and T. Imanaka (1999) Isolation and characterization of a second subunit of molecular chaperonin from Pyrococcus kodakaraensis KOD1: analysis of an ATPase-deficient mutant enzyme. Appl. Environ. Microbiol. 65: 1801–1805.

    CAS  Google Scholar 

  32. Okochi, M., H. Matsuzaki, T. Nomura, N. Ishii N, and M. Yohda (2005) Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Extremophiles 9: 127–134.

    Article  CAS  Google Scholar 

  33. Chen, H. Y., Z. M. Chu, Y. H. Ma, Y. Zhang, and S. L. Yang (2007) Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeon Pyrococcus furiosus. J. Basic Microbiol. 47: 132–137.

    Article  CAS  Google Scholar 

  34. Geladopoulos, T. P., T. G. Sotiroudis, and A. E. Evangelopoulos (1991) A malachite green colorimetric assay for protein phosphatase activity. Anal. Biochem. 192: 112–116.

    Article  CAS  Google Scholar 

  35. Kim, M. J., S. H. Kim, J. H. Lee, J. H. Seo, J. H. Lee, J. H. Kim, Y. H. Kim, and S. W. Nam (2008) High-level secretory expression of human procarboxypeptidase B by fedbatch cultivation of Pichia pastoris and its partial characterization. J. Microbiol. Biotechnol. 18: 1938–1944.

    CAS  Google Scholar 

  36. Jeon, S. J. and K. Ishikawa (2005) Characterization of the family I inorganic pyrophosphatase from Pyrococcus horikoshii OT3. Archaea 1: 385–389.

    Article  CAS  Google Scholar 

  37. Hongo, K., H. Hirai, C. Uemura, S. Ono, J. Tsunemi, T. Higurashi, T. Mizobata, and Y. Kawata (2006) A novel ATP/ADP hydrolysis activity of hyperthermostable group II chaperonin in the presence of cobalt or manganese ion. FEBS Lett. 580: 34–40.

    Article  CAS  Google Scholar 

  38. Park, S. L., E. J. Shin, S. P. Hong, S. J. Jeon, and S. W. Nam (2005) Production of soluble human granulocyte colony stimulating factor in E. coli by molecular chaperones. J. Microbiol. Biotechnol. 15: 1267–1272.

    CAS  Google Scholar 

  39. Shin, E. J., S. L. Park, S. J. Jeon, J. W. Lee, Y. T. Kim, Y. H. Kim, and S. W. Nam (2006) Effect of molecular chaperones on the soluble expression of alginate lyase in E. coli. Biotechnol. Bioprocess Eng. 11: 414–419.

    Article  CAS  Google Scholar 

  40. Oh, I. S., T. W. Kim, J. H. Ahn, J. W. Keum, C. Y. Choi, and D. M. Kim (2007) Use of L-buthionine sulfoximine for the efficient expression of disulfide-containing proteins in cell-free extracts of Escherichia coli. Biotechnol. Bioprocess Eng. 5: 574–578.

    Article  Google Scholar 

  41. Kondo, A., J. Kohda, Y. Endo, T. Shiromizu, Y. Kurokawa, K. Nishihara, H. Yanagi, T. Yura, and H. Fukuda (2000) Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J. Biosci. Bioeng. 90: 600–606.

    Article  CAS  Google Scholar 

  42. Thomas, J. G., A. Ayling, and F. Baneyx (1997) Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from Escherichia coil. Appl. Biochem. Biotechnol. 66: 197–238.

    Article  CAS  Google Scholar 

  43. Kang, C. S., C. W. Park, and I. S. Bang (2008) Production and purification of a cecropin family antibacterial peptide, hinnavin II, in Escherichia coli. Biotechnol. Bioprocess Eng. 13: 377–382.

    Article  CAS  Google Scholar 

  44. Okochi, M., K. Kanie, M. Kurimoto, M. Yohda, and H. Honda (2008) Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance. Appl. Biochem. Biotechnol. 79: 443–449.

    CAS  Google Scholar 

  45. Jung, S. M., A. K. Lim, and K. M. Park (2008) Construction of Candida antarctica lipase B expression system in E. coli coexpressing chaperones. Korean J. Biotechnol. Bioeng. 23: 403–407.

    Google Scholar 

  46. Gribaldo, S., V. Lumia, R. Creti, E. C. de Macario, A. Sanangelantoni, and P. Cammarano (1999) Discontinuous occurrence of the hsp70 (DnaK) gene among archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J. Bacteriol. 181: 434–443.

    CAS  Google Scholar 

  47. Laksanalamai, P., T. A. Whitehead, and F. T. Robb (2004) Minimal protein-folding systems in hyperthermophilic archaea. Nat. Rev. Microbiol. 2: 315–324.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Wan Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Shin, EJ., Jeon, SJ. et al. Overexpression, purification, and functional characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Biotechnol Bioproc E 14, 551–558 (2009). https://doi.org/10.1007/s12257-009-0008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0008-0

Keywords

Navigation