Skip to main content
Log in

Direct purification of Burkholderia Pseudomallei lipase from fermentation broth using aqueous two-phase systems

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

An aqueous two-phase purification process was employed for the recovery of Burkholderia pseudomallei lipase from fermentation broth. The partition behavior of B. pseudomallei lipase was investigated with various parameters such as phase composition, tie-line length (TLL), volume ratio (VR), sample loading, system pH, and addition of neutral salts. Optimum conditions for the purification of lipase were obtained in polyethylene glycol (PEG) 6000-potassium phosphate system using TLL of 42.2% (w/w), with VR of 2.70, and 1% (w/w) NaCl addition at pH 7 for 20% (w/w) crude load. Based on this system, the purification factor of lipase was enhanced to 12.42 fold, with a high yield of 93%. Hence, the simplicity and effectiveness of aqueous two-phase systems (ATPS) in the purification of lipase were proven in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaeger, K.-E., S. Ransac, B. W. Dijkstra, C. Colson, M. van Heuvel, and O. Misset (1994) Bacterial lipases. FEMS Microbiol. Rev. 15: 29–63.

    Article  CAS  Google Scholar 

  2. Yang, J., D. Guo, and Y. Yan (2007) Cloning, expression, and characterization of a novel thermal stable and short-chain alcohol tolerant lipase from Burkholderia cepacia strain G63. J. Mol. Catal. B: Enzym. 45: 91–96.

    Article  CAS  Google Scholar 

  3. El Khattabi, M., P. Van Gelder, W. Bitter, and J. Tommassen (2000) Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone. J. Biol. Chem. 275: 26885–26891.

    Google Scholar 

  4. Rosenau, F. and K.-E. Jaeger (2000) Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie. 82: 1023–1032.

    Article  CAS  Google Scholar 

  5. Saxena, R. K., P. K. Ghosh, R. Gupta, W. S. Davidson, S. Bradoo, and R. Gulati (1999) Microbial lipases: potential biocatalysts for the future industry. Curr. Sci. 77: 101–115.

    CAS  Google Scholar 

  6. Noureddini, H., X. Gao, and R. S. Philkana (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 96: 769–777.

    Article  CAS  Google Scholar 

  7. Jaeger, K.-E., B. W. Dijkstra, and M. T. Reetz (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315–351.

    Article  CAS  Google Scholar 

  8. Pandey, A., S. Benjamin, C. R. Soccol, P. Nigam, N. Krieger, and V. T. Soccol (1999) The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29: 119–131.

    CAS  Google Scholar 

  9. Shimada, Y., Y. Watanabe, T. Samukawa, A. Sugihara, H. Noda, H. Fukuda, and Y. Tominaga (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J. Am. Oil Chem. Soc. 76: 789–793.

    Article  CAS  Google Scholar 

  10. Gupta, R., N. Gupta, and P. Rathi (2004) Bacterial lipases: an overview of production, purification, and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763–781.

    Article  CAS  Google Scholar 

  11. Zaslavsky, B. Y. (1995) Aqueous two-phase partitioning: physical chemistry and bioanalytical applications. pp. 221–290. Marcel Dekker Inc., NY, USA.

    Google Scholar 

  12. Porto, T. S., G. M. Medeiros e Silva, C. S. Porto, M. T. H. Cavalcanti, B. B. Neto, J. L. Lima-Filho, A. Converti, A. L. F. Porto, and A. Pessoa Jr (2008) Liquid-liquid extraction of proteases from fermented broth by PEG/citrate aqueous two-phase system. Chem. Eng. Processing: Process Intensification 47: 716–721.

    Article  CAS  Google Scholar 

  13. Rosa, P. A. J., A. M. Azevedo, I. F. Ferreira, J. de Vries, R. Korporaal, H. J. Verhoef, T. J. Visser, and M. R. Aires-Barros (2007) Affinity partitioning of human antibodies in aqueous two-phase systems. J. Chromatogr. A 1162: 103–113.

    Article  CAS  Google Scholar 

  14. Madhusudhan, M. C., K. S. M. S. Raghavarao, and S. Nene (2008) Integrated process for extraction and purification of alcohol dehydrogenase from Baker’s yeast involving precipitation and aqueous two phase extraction. Biochem. Eng. J. 38: 414–420.

    Article  CAS  Google Scholar 

  15. Albertsson, P. A. (1986) Partition of Cell Particles and Macromolecules. 3rd ed., pp. 1–3. Wiley Interscience, NY, USA.

    Google Scholar 

  16. Costa, M. J. L., M. T. Cunha, J. M. S. Cabral, and M. R. Aires-Barros (2000) Scale-up of recombinant cutinase recovery by whole broth extraction with PEG-phosphate aqueous two-phase. Bioseparation 9: 231–238.

    Article  CAS  Google Scholar 

  17. Roger, G. H. (1994) Liquid-liquid extraction. In: W. M. Courtney (ed.). Protein Purification Process Engineering. Marcel Dekker Inc., NY, USA.

    Google Scholar 

  18. Gupta, N., P. Rathi, and R. Gupta (2002) Simplified para-nitrophenyl palmitate assay for lipases and esterases. Anal. Biochem. 311: 98–99.

    Article  CAS  Google Scholar 

  19. Ishimoto, R., M. Sugimoto, and F. Kawai (2001) Screening and characterization of trehalose-oleate hydrolyzing lipase. FEMS Microbiol. Lett. 195: 231–235.

    Article  CAS  Google Scholar 

  20. Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76–85.

    Article  CAS  Google Scholar 

  21. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  22. Bradoo, S., R. K. Saxena, and R. Gupta (1999) Partitioning and resolution of mixture of two lipases from Bacillus stearothermophilus SB-1 in aqueous two-phase system. Process Biochem. 35: 57–62.

    Article  CAS  Google Scholar 

  23. Almeida, M. C., A. Venancio, J. A. Teixeira, and M. R. Aires-Barros (1998) Cutinase purification on poly (ethylene glycol)-hydroxypropyl starch aqueous two-phase systems. J. Chromatogr. B: Biomed. Sci. Appl. 711: 151–159.

    Article  CAS  Google Scholar 

  24. Grossman, P. D. and J. L. Gainer (1988) Correlation of aqueous two-phase partitioning of proteins with changes in free volume. Biotechnol. 4: 6–11.

    CAS  Google Scholar 

  25. Spelzini, D., B. Farruggia, and G. Picó (2005) Features of the acid protease partition in aqueous two-phase systems of polyethylene glycol-phosphate: chymosin and pepsin. J. Chromatogr. B 821: 60–66.

    Article  CAS  Google Scholar 

  26. Huddleston, J. G., K. W. Ottomar, D. M. Ngonyani, and A. Lyddiatt (1991) Influence of system and molecular parameters upon fractionation of intracellular proteins from Saccharomyces by aqueous two-phase partition. Enzym. Microb. Technol. 13: 24–32.

    Article  CAS  Google Scholar 

  27. Johansson, G. (1994) Partitioning procedures and techniques: small molecules and macromolecules. Methods Enzymol. 228: 28–42.

    Article  CAS  Google Scholar 

  28. Saravanan, S., J. R. Rao, T. Murugesan, B. U. Nair, and T. Ramasami (2007) Partition of tannery wastewater proteins in aqueous two-phase poly (ethylene glycol)-magnesium sulfate systems: effects of molecular weights and pH. Chem. Eng. Sci. 62: 969–978.

    Article  CAS  Google Scholar 

  29. Bonomo, R. C. F., L. A. Minim, J. S. R. Coimbra, R. C. I. Fontan, L. H. Mendes da Silva, and V. P. R. Minim (2006) Hydrophobic interaction adsorption of whey proteins: effect of temperature and salt concentration and thermodynamic analysis. J. Chromatogr. B 844: 6–14.

    Article  CAS  Google Scholar 

  30. Vojdani, F. (1996) Solubility. pp. 11–60. In: G. M. Hall (ed.). Methods of Testing Protein Functionality. Blackie Academic and Professional, London, UK.

    Google Scholar 

  31. Rito-Palomares, M. and M. Hernandez (1998) Influence of system and process parameters on partitioning of cheese whey proteins in aqueous two-phase systems. J. Chromatogr. B: Biomed. Sci. Appl. 711: 81–90.

    Article  CAS  Google Scholar 

  32. Cunha, M. T., M. R. Aires-Barros, and J. M. S. Cabral (2003) Extraction for rapid protein isolation. pp. 321–372. In: R. Hatti-Kaul and B. Mattiasson (eds.). Isolation and purification of proteins. Marcel Dekker Inc., NY, USA.

    Google Scholar 

  33. Walter, H. and G. Johansson (1994) Aqueous two-phase systems, Methods in Enzymology. 2nd ed. Academic Press, London, UK.

    Google Scholar 

  34. Hustedt, H., K. H. Kroner, and M. R. Kula (1985) Applications of phase partitioning in biotechnology. pp. 529–587. In: H. Walter, D. E. Brooks, and D. Fischer (eds.) Partitioning in Aqueous Two Phase Systems. Theory, Methods, Uses, and Applications to Biotechnology. Academic Press, Orlando, FL, USA.

    Google Scholar 

  35. Abbott, N. L. and T. A. Hatton (1988) Liquid-liquid extraction for protein separations. Chem. Eng. Prog. 84: 31–41.

    CAS  Google Scholar 

  36. Walter, H., D. E. Brooks, and D. Fisher (1985) Partitioning in aqueous-two phase systems: theory, methods, uses, and application in biotechnology. Academic Press, Orlando, FL, USA.

    Google Scholar 

  37. Tanuja, S., N. D. Srinivas, K. S. M. S. Raghava Rao, and M. K. Gowthaman (1997) Aqueous two-phase extraction for downstream processing of amyloglucosidase. Process Biochem. 32: 635–641.

    Article  CAS  Google Scholar 

  38. Johansson, G. (1970) Partition of salts and their effects on partition of proteins in a dextran-poly(ethylene glycol)-water two-phase system. Biochim. Biophys. Acta 221: 387–390.

    CAS  Google Scholar 

  39. Forciniti, D. (2000) Studying the influence of salts on partitioning of proteins. pp. 23–33. In: R. H. Kaul (ed.). Methods in Biotechnology 11: Aqueous Two phase system: Methods and protocols. Humana Press Inc., Totowa, NJ, USA.

    Chapter  Google Scholar 

  40. Mahfouz, M. E., T. H. Grayson, D. A. B. Dance, and M. L. Gilpin (2006) Characterization of the mrgRS locus of the opportunistic pathogen Burkholderia pseudomallei: temperature regulates the expression of a two-component signal transduction system. BMC Microbiol. 6:70.

    Article  CAS  Google Scholar 

  41. Yeo, S. H., T. Nihira, and Y. Yamada (1998) Purification and Characterization of tert-Butyl Ester-hydrolyzing Lipase from Burkholderia sp. YY62. Biosci. Biotechnol. Biochem. 62: 2312–2317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tau Chuan Ling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ooi, C.W., Tey, B.T., Hii, S.L. et al. Direct purification of Burkholderia Pseudomallei lipase from fermentation broth using aqueous two-phase systems. Biotechnol Bioproc E 14, 811–818 (2009). https://doi.org/10.1007/s12257-008-0306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0306-y

Keywords

Navigation