Skip to main content
Log in

Gene-expression analysis of acidic pH shock effects on two-component systems in Streptomyces coelicolor

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, transcriptional analyses by using reverse transcription-polymerase chain reaction (RT-PCR), DNA chip, and quantitative real time-PCR were performed to investigate effects of acidic pH shock on two-component systems in Streptomyces coelicolor A3(2). Two-component systems of cseC/cseB and vanS/vanR known to be closely linked with self-protection against cell wall hydrolysis caused by external stimuli were upregulated by the pH shock. The chiS/chiR, afsQ2/afsQ1, ecrA2/ecrA1, bldM, ramC/ramR, and ragK/ragR known to be positively associated with the initiation of secondary metabolism were also upregulated. The cutS/cutR known to be negatively related to the secondary metabolism was, however, slightly downregulated. Upregulation or downregulation by the acidic pH shock of these two-component regulator systems might have contributed in a concerted manner to the enhancement of secondary metabolite production, at least, in this particular case of actinorhodin production in S. coelicolor A3(2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beppu, T. (1995) Signal transduction and secondary metabolism: prospects for controlling productivity. Trends Biotechnol. 13: 264–269.

    Article  CAS  Google Scholar 

  2. Hayes, A., G. Hobbs, C. P. Smith, S. G. Oliver, and P. R. Butler (1997) Environmental signals triggering methylenomycin production by Streptomyces coelicolor A3(2). J. Bacteriol. 179: 5511–5515.

    CAS  Google Scholar 

  3. Horinouchi, S. (2003) AfsR as an integrator of signals that are sensed by multiple serine/threonine kinase in Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30: 462–467.

    Article  CAS  Google Scholar 

  4. Horiouchi, S. and T. Beppu (1992) Regulatin of secondary metabolism and cell differentiation in Streptomyces: A-factor as a microbial hormone and the AfsR protein as a component of a two-component regulatory system. Gene 115: 167–172.

    Article  Google Scholar 

  5. Mikilik, K., Q. Khanh-Hoang, P. Halada, S. Bezoouskova, O. Benada, and V. Behal (1999) Expression of the Csp protein family upon cold shock and production of tetracycline in Streptomyces aureofaciens. Biochem. Biophysic. Res. Comm. 265: 305–310.

    Article  Google Scholar 

  6. Sevcikova, B. and J. Kormanec (2004) Differential prodcution of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Arch. Microbiol. 181: 384–389.

    Article  CAS  Google Scholar 

  7. Kim, C. J., Y. K. Chang, G. T. Chun, Y. H. Jeong, and S. J. Lee (2001) Continuous culture of immobilized Streptomyces cells for kasugamycin production. Biotechnol. Prog. 17: 453–461.

    Article  CAS  Google Scholar 

  8. Kim, C. J., Y. K. Chang, and G. T. Chun (2000) Enhancement of kasugamycin production by pH shock in batch cultures of Streptomyces kasugaensis. Biotechnol. Prog. 16: 548–552.

    Article  CAS  Google Scholar 

  9. Kim, Y. J., J. Y. Song, M. H. Moon, C. P. Smith, S. K. Hong, and Y. K. Chang (2007) pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin production in Streptomyces coelicolor A3(2) Appl. Microbiol. Biotechnol. 76: 1119–1130.

    Article  CAS  Google Scholar 

  10. Hoch, J. A. and T. J. Silhavy (1995) Two-Component Signal Transduction. ASM Press, Washington, DC, USA.

    Google Scholar 

  11. Stephenson, K. and J. A. Hoch (2002) Virulence- and antibiotic resistance-associated two-component systems of Gram-positive pathogenic bacteria as targets for antimicrobial therapy. Pharm. Therap. 93: 293–305.

    Article  CAS  Google Scholar 

  12. Ninfa, A. J. and B. Magasanik (1986) Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 83: 5909–5913.

    Article  CAS  Google Scholar 

  13. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich, UK.

    Google Scholar 

  14. Hong, H. J., M. S. B. Paget, and M. J. Buttner (2002) A systems in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol. Microbiol. 44: 1199–1211.

    Article  CAS  Google Scholar 

  15. Hong, H. J., M. I. Hutchings, J. M. Neu, G. D. Wright, M. S. B. Paget, and M. J. Buttner (2004) Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol. Microbiol. 52: 1107–1121.

    Article  CAS  Google Scholar 

  16. Hutchings, M. I., H. J. Hong, and M. J. Buttner (2006) The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Mol. Microbiol. 59: 923–935.

    Article  CAS  Google Scholar 

  17. Homerová, D., R. Knirschová, and J. Kormanec (2002) Response regulator ChiR regulates expression of chitinase gene, chiC, in Streptomyces coelicolor. Folia Microbiol. 47: 499–505.

    Article  Google Scholar 

  18. Tsujibo, H., N. Hatano, T. Okamoto, H. Endo, K. Miyamoto, and Y. Inamori (1999) Synthesis of chitinase in Streptomyces thermoviolaceus is regulated by a two-component sensor-regulator system. FEMS Microbiol. Lett. 181: 83–90.

    Article  CAS  Google Scholar 

  19. Ishizuka, H., S. Horinouchi, H. M. Kieser, D. A. Hopwood, and T. Beppu (1992) A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J. Bacteriol. 17423: 7585–7594.

    Google Scholar 

  20. LI, Y. Q., P. L. Cen, S. F. Chen, D. Wu, and J. Zheng (2004) A pair of two-component regulatory genes ecrA1/A2 in S. coelicolor. J. Zhejiang Univ. Sci. 5: 173–179.

    Article  Google Scholar 

  21. Huang, J. L., C. J. Lih, K. H. Pan, and S. N. Cohen (2001) Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev. 15: 3183–3192.

    Article  CAS  Google Scholar 

  22. Chang, H. M., M. Y. Chen, T. T. Shieh, M. J. Bibb, and C. W. Chen (1996) The cutRS systems of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol. Microbiol. 21: 1075–1085.

    CAS  Google Scholar 

  23. Chater, K. F. and G. Chandra (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol. Rev. 30: 651–672.

    Article  CAS  Google Scholar 

  24. Paolo, S. S., J. Huang, S. N. Cohen, and C. J. Thompson (2006) Rag genes: novel components of the RamR regulon that trigger morphological differentiation in Streptomyces coelicolor. Mol. Microbiol. 61: 1167–1186.

    Article  Google Scholar 

  25. Nguyen, K. T., J. M. Willey, L. D. Nguyen, L. T. Nguyen, P. H. Viollier, and C. J. Thompson (2002) A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Mol. Microbiol. 46: 1223–1238.

    Article  CAS  Google Scholar 

  26. Bibb, M. J., V. Molle, and M. J. Buttner (2000) σBldN, an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J. Bacteriol. 182: 4606–4616.

    Article  CAS  Google Scholar 

  27. Kodani, S., M. E. Hudson, M. C. Durrant, M. J. Butter, J. R. Nodwell, and J. M. Willey (2004) The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene rams in Streptomyces coelicolor. Proc. Natl. Acad. Sci. USA 101: 11448–11453.

    Article  CAS  Google Scholar 

  28. O’connor, T. J., P. Kanellis, and J. R. Nodwell (2002) The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol. Microbiol. 45: 45–57.

    Article  Google Scholar 

  29. Hopwood, D. A., K. F. Chater, and M. J. Bibb (1995) Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Biotechnol. 28: 65–102.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Keun Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.J., Moon, A.N., Song, J.Y. et al. Gene-expression analysis of acidic pH shock effects on two-component systems in Streptomyces coelicolor . Biotechnol Bioproc E 14, 584–590 (2009). https://doi.org/10.1007/s12257-008-0260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0260-8

Keywords

Navigation