Production of hydrogen from marine macro-algae biomass using anaerobic sewage sludge microflora

Abstract

Hydrogen was produced from various marine macro-algae (seaweeds) through anaerobic fermentation using an undefined bacterial consortium. In this study, anaerobic fermentation from various marine macro-algae for Ulva lactuca, Porphyra tenera, Undaria pinnatifida, and Laminaria japonica was studied. From this analysis Laminaria japorica was determined to be the optimum substrate for hydrogen production. When L. japornica was used as the carbon source for enhanced hydrogen production, the optimum fermentation temperature, substrate concentration, initial pH, and pretreatment condition were determined to be 35°C, 5%, 7.5, and BT120 (Ball mill and thermal treatments at 120°C for 30 min), respectively. In addition, hydrogen production was improved when the sludge was heat-treated at 65°C for 20 min. Under these conditions, about 4,164 mL of hydrogen was produced from 50 g/L of dry algae (L. japonica) for 50 h, with a hydrogen concentration around 34.4%. And the maximum hydrogen production rate and yield were found to be 70 mL/L·h and 28 mL/g dry algae, respectively.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Yokoyama, H., M. Waki, N. Moriya, T. Yasuda, Y. Tanaka, and K. Haga (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl. Microbiol. Biotechnol. 74: 474–483.

    Article  CAS  Google Scholar 

  2. 2.

    Zhu, H. and M. Beland (2006) Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int. J. Hydrogen Energ. 31: 1980–1988.

    Article  CAS  Google Scholar 

  3. 3.

    Jensen, A. (1993) Present and future needs for algae and algal products. Hydrobiologia 260/261: 15–23.

    Article  Google Scholar 

  4. 4.

    Tseng, C. K. (2001) Algal biotechnology industries and research activities in China. J. Appl. Phycol. 13: 375–380.

    Article  Google Scholar 

  5. 5.

    Klass, D. L. (1974) A perpetual methane economy-is it possible? Chem. Tech. 3: 161–168.

    Google Scholar 

  6. 6.

    Schink, B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61: 262–280.

    CAS  Google Scholar 

  7. 7.

    Kloareg, B., M. Demarty, and S. Mabeau (1986) Polyanionic characteristics of purified sulphated homofucans from brown algae. Int. J. Biol. Macromol. 8: 380–386.

    Article  CAS  Google Scholar 

  8. 8.

    Kloareg, B. and R. S. Quatrano (1988) Structure of cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr. Mar. Biol. 26: 259–315.

    Google Scholar 

  9. 9.

    Percival, E. and R. H. McDowell (1967) Chemistry and Enzymology of Marine Algal Polysaccharides. Academic Press, London, UK.

    Google Scholar 

  10. 10.

    Troiano, R. A., D. L. Wise, D. C. Augenstein, R. G. Kispert, and C. L. Cooney (1976) Fuel gas production by anaerobic digestion of kelp. Resour. Conservat. Recycl. 2: 171–176.

    Article  CAS  Google Scholar 

  11. 11.

    Kim, J. S., C. H. Park, T. H. Kim, M. G. Lee, S. Y. Kim, S. W. Kim, and J. W. Lee (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95: 271–275.

    CAS  Google Scholar 

  12. 12.

    Woodard, S. E. and R. F. Wukasch (1994) A hydrolysis/thickening/flirtation process for the treatment of waste activated sludge. Water Sci. Tech. 30: 29–38.

    CAS  Google Scholar 

  13. 13.

    Sawayama, S., S. Inoue, K. Tsukahara, and T. Ogi (1996) Thermochemical liquidization of anaerobically digested and dewatered sludge and anaerobic pretreatment. Bioresour. Tech. 55: 141–144.

    Article  CAS  Google Scholar 

  14. 14.

    Penaud, V., J. P. Delgenes, and R. Moletta (1999) Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzym. Microb. Tech. 25: 258–263.

    Article  CAS  Google Scholar 

  15. 15.

    Fan, Y., C. Li, J. J. Lay, H. Hou, and G. Zhang (2004) Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresour. Tech. 91: 189–193.

    Article  CAS  Google Scholar 

  16. 16.

    Lin, C. Y. and R. C. Chang (1999) Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Tech. Biotechnol. 74: 498–500.

    Article  CAS  Google Scholar 

  17. 17.

    Oh, Y. K., M. S. Park, E. H. Seol, S. J. Lee, and S. H. Park (2003) Isolation of hydrogen-producing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor. Biotechnol. Bioprocess Eng. 8: 54–57.

    Article  CAS  Google Scholar 

  18. 18.

    Wang, C. C., C. W. Chang, C. P. Chu, D. J. Lee, B. V. Chang, and C. S. Liao (2003) Producing hydrogen from wastewater sludge by Clostridium bifermentans. J. Biotechnol. 102: 83–92.

    Article  CAS  Google Scholar 

  19. 19.

    Kim, J. K., L. Nhat, Y. N. Chun, and S. W. Kim (2008) Hydrogen production conditions from food waste by dark fermentation with clostridium beijerinckii KCTC 1785. Biotechnol. Bioprocess Eng. 13: 499–504.

    Article  CAS  Google Scholar 

  20. 20.

    Chang, F. Y. and C. Y. Lin (2004) Biohydrogen production using an upflow anaerobic sludge blanket reactor. Int. J. Hydrogen Energ. 29: 33–39.

    Article  CAS  Google Scholar 

  21. 21.

    Cohen, A., B. Distel, A. van Deursen, and J. G. van Andel (1985) Role of anaerobic spore-forming bacteria in the acidogenesis of glucose-changes induced by discontinuous or low-rate feed supply. J. Microbiol. 51: 179–192.

    CAS  Google Scholar 

  22. 22.

    Ginkel, S. V. and S. Sung (2001) Biohydrogen productions a function of pH and substrate concentration. Environ. Sci. Tech. 35: 4726–4730.

    Article  CAS  Google Scholar 

  23. 23.

    Han, H. K. and H. S. Shin (2004) Performance of an innovative two-stage process converting food waste to hydrogen and methane. J. Air Waste Manag. Assoc. 54: 242–249.

    CAS  Google Scholar 

  24. 24.

    Lay, J. J. (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68: 269–278.

    Article  CAS  Google Scholar 

  25. 25.

    Lay, J. J., K. S. Fan, J. Chang, and C. H. Ku (2003) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int. J. Hydrogen Energ. 28: 1361–1367.

    Article  CAS  Google Scholar 

  26. 26.

    Logan, B. E., S. E. Oh, I. S. Kim, and S. V. Ginkel (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Tech. 36: 2530–2535.

    Article  CAS  Google Scholar 

  27. 27.

    Oh, S. E., S. V. Ginkel, and B. E. Logan (2003) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ. Sci. Tech. 37: 186–190.

    Google Scholar 

  28. 28.

    Ueno, Y., S. Otauka, and M. Morimoto (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J. Ferment. Bioeng. 82: 194–197.

    Article  CAS  Google Scholar 

  29. 29.

    Rowbotham, T. J. and T. Cross (1977) Ecology of Rhodococcus coprophilus and associated actinomycetes in fresh water and agricultural habitats. J. Gen. Microbiol. 100: 231–240.

    Google Scholar 

  30. 30.

    Sandrak, N. A. (1977) Cellulose decomposition by Micromonosporas. Microbiology 46: 384–386.

    Google Scholar 

  31. 31.

    Owen, W. F., D. C. Stuckey, J. B. Healy, L. Y. Young, and P. L. McCarty (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13: 485–492.

    Article  CAS  Google Scholar 

  32. 32.

    Rajesh Banu, J., S. Kaliappan, and L. T. Yeom (2007) Two-stage anaerobic treatment of dairy wastewater using HUASB with PUF and PVC carrier. Biotechnol. Bioprocess Eng. 12: 257–264.

    Article  Google Scholar 

  33. 33.

    Khanal, S. K., W. H. Chen, L. Li, and S. Sung (2004) Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrogen Energ. 29: 1123–1131.

    CAS  Google Scholar 

  34. 34.

    Nagamani, B. and K. Ramasamy (1999) Biogas production technology: an Indian perspective. Curr. Sci. 77: 44–55.

    CAS  Google Scholar 

  35. 35.

    Li, Y. Y. and T. Noike (1992) Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment. Water Sci. Tech. 26: 857–866.

    CAS  Google Scholar 

  36. 36.

    Liu, D., D. Liu, R. J. Zeng, and I. Angelidaki (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 40: 2230–2236.

    Article  CAS  Google Scholar 

  37. 37.

    Fan, K. S., N. Kan, and J. Lay (2006) Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour. Technol. 97: 84–89.

    Article  CAS  Google Scholar 

  38. 38.

    Ueno, Y., H. Fukui, and M. Goto (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ. Sci. Technol. 41: 1413–1419.

    Article  CAS  Google Scholar 

  39. 39.

    Kim, S. H., S. K. Han, and H. S. Shin (2008) Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time. Process Biochem. 43: 213–218.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jae-Hwa Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, JI., Lee, J., Sim, S.J. et al. Production of hydrogen from marine macro-algae biomass using anaerobic sewage sludge microflora. Biotechnol Bioproc E 14, 307 (2009). https://doi.org/10.1007/s12257-008-0241-y

Download citation

Keywords

  • hydrogen
  • marine macro-algae
  • Laminaria japonica
  • anaerobic fermentation