Advertisement

Production of β-carotene by recombinant Escherichia coli with engineered whole mevalonate pathway in batch and fed-batch cultures

  • Jung Hun Kim
  • Seon-Won Kim
  • Do Quynh Anh Nguyen
  • He Li
  • Sung Bae Kim
  • Yang-Gon Seo
  • Jae-Kyung Yang
  • In-Young Chung
  • Dae Hwan Kim
  • Chang-Joon KimEmail author
Article

Abstract

Recombinant Escherichia coli engineered to contain the whole mevalonate pathway and foreign genes for β-carotene biosynthesis, was utilized for production of β-carotene in bioreactor cultures. Optimum culture conditions were established in batch and pH-stat fed-batch cultures to determine the optimal feeding strategy thereby improving production yield. The specific growth rate and volumetric productivity in batch cultures at 37°C were 1.7-fold and 2-fold higher, respectively, than those at 28°C. Glycerol was superior to glucose as a carbon source. Maximum β-carotene production (titer of 663 mg/L and overall volumetric productivity of 24.6 mg/L × h) resulted from the simultaneous addition of 500 g/L glycerol and 50 g/L yeast extract in pH-stat fed-batch culture.

Keywords

recombinant Escherichia coli engineered whole mevalonate pathway β-carotene bioreactor culture fed-batch culture 

References

  1. 1.
    Raja, R., S. Hemaiswarya, and R. Rengasamy (2007) Exploitation of Dunaliella for β-carotene production. Appl. Microbiol. Biotechnol. 74: 517–523.CrossRefGoogle Scholar
  2. 2.
    Yamane, Y. I., K. Higashida, Y. Nakamada, T. Kakizono, and N. Nishio (1997) Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures: kinetic and stoichiometric analysis. Appl. Environ. Microbiol. 63: 4471–4478.Google Scholar
  3. 3.
    Mantzouridou, F., T. Roukas, and P. Kotzekidou (2004) Production of beta-carotene from synthetic medium by Blakeslea trispora in fed-batch culture. Food Biotechnol. 18: 343–361.CrossRefGoogle Scholar
  4. 4.
    Goksungur, Y., F. Mantzouridou, and T. Roukas (2002) Optimization of the production of beta-carotene from molasses by Blakeslea trispora: a statistical approach. J. Chem. Technol. Biotechnol. 77: 933–943.CrossRefGoogle Scholar
  5. 5.
    Bhosale, P. and R. V. Gadre (2001) β-carotene production in sugarcane molasses by a Rhodotorula glutinis mutant. J. Ind. Microbiol. Biotechnol. 26: 327–332.CrossRefGoogle Scholar
  6. 6.
    Leon, R., M. Martin, J. Vigara, C. Vilchez, and J. M. Vega (2003) Microalgae mediated photoproduction of β-carotene in aqueous-organic two phase systems. Biomol. Eng. 20: 177–182.CrossRefGoogle Scholar
  7. 7.
    Hejazi, M. A., C. Lamarliere, J. M. Rocha, M. Vermue, J. Tramper, and R. H. Wijffels (2002) Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnol. Bioeng. 79: 29–36.CrossRefGoogle Scholar
  8. 8.
    Hejazi, M. A. and R. H. Wijffels (2004) Milking of microalgae. Trends Biotechnol. 22: 189–194.CrossRefGoogle Scholar
  9. 9.
    Sandmann, G. (2001) Carotenoid biosynthesis and biotechnological application. Arch. Biochem. Biophys. 385: 4–12.CrossRefGoogle Scholar
  10. 10.
    Yuan, L. Z., P. E. Rouviere, R. A. Larossa, and W. C. Suh (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in Escherichia coli. Metab. Eng. 8: 79–90.CrossRefGoogle Scholar
  11. 11.
    Kim, S. W., J. B. Kim, W. H. Jung, J. H. Kim, and J. K. Jung (2006) Over-production of β-carotene from metabolically engineered Escherichia coli. Biotechnol. Lett. 28: 897–904.CrossRefGoogle Scholar
  12. 12.
    Albrecht M., N. Misawa, and G. Sandmann (1999) Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin. Biotechnol. Lett. 21: 791–795.CrossRefGoogle Scholar
  13. 13.
    Das, A., S. H. Yoon, S. H. Lee, J. Y. Kim, D. K. Oh, and S. W. Kim (2007) An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl. Microbiol. Biotechnol. 77: 505–512.CrossRefGoogle Scholar
  14. 14.
    Rohlin, L., M. K. Oh, and J. C. Liao (2001) Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis, and rational design. Curr. Opi. Microbiol. 4: 330–335.CrossRefGoogle Scholar
  15. 15.
    Sandmann, G. S., M. Albrecht, G. Schnurr, O. Knorzer, and P. Boger (1999) The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. Trends Biotechnol. 17: 233–237.CrossRefGoogle Scholar
  16. 16.
    Kajiwara, S., P. D. Fraser, K. Kondo, and N. Misawa (1997) Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem. J. 324: 421–426.Google Scholar
  17. 17.
    Matthews, P. D. and E. T. Wurtzel (2000) Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl. Microbiol. Biotechnol. 53: 396–400.CrossRefGoogle Scholar
  18. 18.
    Wang, C. W., M. K. Oh, and J. C. Liao (1999) Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol. Bioeng. 62: 235–241.CrossRefGoogle Scholar
  19. 19.
    Lee, P. C., B. N. Mijts, and C. Schmidt-Dannert (2004) Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 65: 538–546.Google Scholar
  20. 20.
    Park, K. M., M. W. Song, and J. H. Lee (2008) Production of carotenoids by β-ionone-resistant mutant of Xanthophyllomyces dendrorhous using various carbon sources. Biotechnol. Bioprocess Eng. 13: 197–203.CrossRefGoogle Scholar
  21. 21.
    Lee, J. H., Y. B. Seo, S.-Y. Jeong, S.-W. Nam, and Y. T. Kim (2007) Functional analysis of combinations in astaxanthin biosynthesis genes from Paracoccus haeundaensis. Biotechnol. Bioprocess Eng. 12: 312–317.CrossRefGoogle Scholar
  22. 22.
    Martin, V. J. J, D. J. Pitera, S. T. Withers, J. D. Newman, and J. D Keasling (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21: 796–802.CrossRefGoogle Scholar
  23. 23.
    Vadali, R. V., Y. Fu, G. N. Bennett, and K. Y. San (2005) Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol. Prog. 21: 1558–1561.CrossRefGoogle Scholar
  24. 24.
    Yoon, S. H., Y. M. Lee, J. E. Kim, S. H. Lee, J. H. Lee, J. Y. Kim, K. H. Jung, Y. C. Shin, J. D. Keasling, and S. W. Kim (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol. Bioeng. 94: 1025–1032.CrossRefGoogle Scholar
  25. 25.
    Yoon, S. H., H. M. Park, J. E. Kim, S. H. Lee, M. S. Choi, J. Y. Kim, D. K. Oh, J. D. Keasling, and S. W. Kim (2007) Increased β-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol. Prog. 23: 599–605.CrossRefGoogle Scholar
  26. 26.
    Yoon, S. H., S. H. Lee, A. Das, H. K. Ryu, H. J. Jang, J. Y. Kim, D. K. Oh, J. D. Keasling, and S. W. Kim (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in Escherichia coli. J. Biotechnol. 140: 218–226.CrossRefGoogle Scholar
  27. 27.
    Doun, S. S., J. W. Burgner, S. D. Briggs, and V. W. Rodwell (2005) Enterococcus faecalis phosphomevalonate kinase. Protein Sci. 14: 1134–1139.CrossRefGoogle Scholar
  28. 28.
    Hedl, M., A. Sutherlin, E. I. Wilding, M. Mazzulla, D. Mcdevitt, P. Lane, J. W. Burgner, K. R. Lehnbeuter, C. V. Stauffacher, M. N. Gwynn, and V. W. Rodwell (2002) Enterococcus faecalis acetoacetyl-coenzyme A thiolase/3-hydroxy-3-methylglutaryl-coenzyme A reductase, a dual-function protein of isopentenyl diphosphate biosynthesis. J. Bacteriol. 184: 2116–2122.CrossRefGoogle Scholar
  29. 29.
    Gadgil, M., V. Kapur, and W. S. Hu (2005) Transcriptional response of Escherichia coli to temperature shift. Biotechnol. Prog. 21: 689–699.CrossRefGoogle Scholar
  30. 30.
    Eiteman, M. A. and E. Altman (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24: 530–536.CrossRefGoogle Scholar
  31. 31.
    Shiloach, J. and R. Fass (2005) Growing Escherichia coli to high cell density-A historical perspective on method development. Biotechnol. Adv. 23: 345–357.CrossRefGoogle Scholar
  32. 32.
    Warren, J. W., J. R. Walker, J. R. Roth, and E. Altman (2000) Construction and characterization of a highly regulable expression vector, pLAC11, and its multipurpose derivatives, pLAC22 and pLAC33. Plasmid 44: 138–151.CrossRefGoogle Scholar
  33. 33.
    Klein-Marcuschamer, D., P. K. Ajikumar, and G. Stephanopolous (1999) Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends Biotechnol. 17: 233–237.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Jung Hun Kim
    • 1
  • Seon-Won Kim
    • 2
  • Do Quynh Anh Nguyen
    • 1
  • He Li
    • 1
  • Sung Bae Kim
    • 1
  • Yang-Gon Seo
    • 1
  • Jae-Kyung Yang
    • 3
  • In-Young Chung
    • 4
  • Dae Hwan Kim
    • 5
  • Chang-Joon Kim
    • 1
    Email author
  1. 1.Department of Chemical & Biological Engineering and ERIGyeongsang National UniversityJinjuKorea
  2. 2.Division of Applied Life Science (BK21), EB-NCRC and PMBBRCGyeongsang National UniversityJinjuKorea
  3. 3.Division of Environmental Forest Science and Institute of Agriculture & Life ScienceGyeongsang National UniversityJinjuKorea
  4. 4.Department of Electronic and Communications EngineeringKwangwoon UniversitySeoulKorea
  5. 5.School of Electrical EngineeringKookmin UniversitySeoulKorea

Personalised recommendations