Skip to main content
Log in

Multi-parameter flow cytometry as a tool to monitor heterotrophic microalgal batch fermentations for oil production towards biodiesel

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Multi-parameter flow cytometry was used to monitor cell intrinsic light scatter, viability, and lipid content of Chlorella protothecoides cells grown in shake flasks. Changes in the right angle light scatter (RALS) and forward angle light scatter (FALS) were detected during the microalgal growth, which were attributed to the different microalgal cell cycle stages. The proportion of cells not stained with PI (cells with intact cytoplasmic membrane) was high (> 90%) during the microalgal growth, even in the latter stationary phase, suggesting that the microalgal cells built-up storage materials which allowed them to survive under nutrient starvation, maintaining their cytoplasmic membranes intact. A high correlation between the Nile Red fluorescence intensity measured by flow cytometry and total lipid content assayed by the traditional lipid extraction method was found for this microalga, making this method a suitable and quick technique for the screening of microalgal strains for lipid production, optimization of biofuel production bioprocesses, and scale-up studies. The highest oil content (∼28% w/w dry cell weight, estimated by flow cytometry) was observed in the latter stationary phase. In addition, C. protothecoides oil also depicted the adequate fatty acid methyl ester composition for biodiesel purposes at this growth phase, suggesting that the microalgal oil produced during the latter stationary phase could be an adequate substitute for diesel fuel. Medium growth optimization for enhancement of microalgal oil production is now in progress, using the multi-parameter approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, F. R. and M. A. Hanna (1999) Biodiesel production. Biores. Technol. 70: 1–15.

    Article  CAS  Google Scholar 

  2. Patil, V. (2008) The relevance of biofuels. Curr. Sci. 92: 707.

    Google Scholar 

  3. Chisti, Y. (2007) Biodiessel from microalgae. Biotechnol. Adv. 25:294–306.

    Article  CAS  Google Scholar 

  4. Chiu, S.Y., C. Y. Kao, C. H. Chen, T. C. Kuan, S. C. Ong, and C. S. Lin (2008) Reduction of CO2 by a highdensity culture of Chlorella sp. in a semicontinuous photobioreactor. Biores. Technol. 99: 3389–3396.

    Article  CAS  Google Scholar 

  5. Pulz, O. (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 57: 287–293.

    Article  CAS  Google Scholar 

  6. Schenk, P. M., S. R. Thomas-Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, O. Kruse, and B. Hankamer (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res. DOI 10.1007/s12155-008-9008-8.

  7. Jiang Y., F. Chen, and S. Liang (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem. 34: 633–637.

    Article  CAS  Google Scholar 

  8. Miao, X. and Q. Wu (2006) Biodiesel production from heterotrophic microalgal oil. Biores. Technol. 97: 841–846.

    Article  CAS  Google Scholar 

  9. Xu, H., X. Miao, and Q. Wu (2006) High quality biodiesel production from a microalga Chlorella prototehcoides by heterotrophic growth in fermenters. J. Biotechnol. 126: 499–507.

    Article  CAS  Google Scholar 

  10. Xiong, W., L. Xiufeng, J. Xiang, and Q Wu (2008) High-density fermentation of microalgal Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol. 78: 29–36.

    Article  CAS  Google Scholar 

  11. Li, X., H. Xu, and Q. Wu (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechol. Bioeng. 98: 764–771.

    Article  CAS  Google Scholar 

  12. Elsey, D., D. Jameson, B. Raleigh, and M. J. Cooney (2007) Fluorescent measurements of microalgal neutral lipids. J. Microbiol. Methods 68: 639–642.

    Article  CAS  Google Scholar 

  13. Tornabene, T. G. (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microbiol. Technol. 5: 435–440.

    Article  CAS  Google Scholar 

  14. Greenspan, P., E. P. Mayer, and S. D. Fowler (1985) Nile Red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100: 965–973.

    Article  CAS  Google Scholar 

  15. de la Jara, A., H. Medonza, A. Martel, C. Molina, L. Nordströn, V. de la Rosa, and R. Díaz (2003) Flow cytometric determination of lipid content in a marine dinoflagellate Crypthecodinium cohnii. J. Appl. Phycol. 15: 433–438.

    Article  Google Scholar 

  16. Kimura, K., M. Yamaoka, and Y. Kamisaka (2004) Rapid estimation of lipids in oleaginous fungi and yeasts using Nile Red fluorescence. J. Microbiol. Methods 56: 331–338.

    Article  CAS  Google Scholar 

  17. Hewitt, C. J. and G. Nebe-Von-Caron (2001) An Industrial application of multiparameter flow cytometry: assessment of cell physiological state and its application to the study of microbial fermentations. Cytometry 44: 179–187.

    Article  CAS  Google Scholar 

  18. Hewitt, C. J. and G. Nebe-Von-Caron (2004) The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. Adv. Biochem. Eng. Biotechnol. 89: 197–223.

    CAS  Google Scholar 

  19. Reis, A., T. Lopes da Silva, C. A. Kent, M. Kosseva, J. C. Roseiro, and J. C. Hewitt (2005) Monitoring population dynamics of the thermophilic Bacillus licheniformis CCMI 1034 in batch and continuous cultures using multi-parameter flow cytometry. J. Biotechnol. 115: 199–210.

    Article  CAS  Google Scholar 

  20. Lopes da Silva, T. and A. Reis (2008) The use of multiparameter flow cytometry to study the impact of ndodecane additions to marine dinoflagellate microalga Crypthecodinium cohnii batch fermentations and DHA production. J. Ind. Microbiol. Biotechnol. 35: 875–887.

    Article  CAS  Google Scholar 

  21. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  22. Lepage, G. and C. Roy (1986) Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 27: 114–119.

    CAS  Google Scholar 

  23. Yeung P. K. K. and J. T. Y. Wong (2003). Inhibition of cell proliferation by mechanical agitation involves transient cell cycle arrest at G1 phase dinoflagellates. Protoplasma 220: 173–178.

    Article  CAS  Google Scholar 

  24. Wynn, J., P. Behrens, A. Sundararajan, J. Hansen, and K. Apt. (2005) Single cell oils. pp. 86–98. In: Z. Cohen and C. Ratledge (eds.). Production of single cell oils by dinoflagellates. AOCS press, Champaign, IL, USA.

    Google Scholar 

  25. Premazzi, G., G. Buonaccorsi, and P. Zilio (1989) Flow cytometry for algal studies. Wat. Res. 23: 431–442.

    Article  CAS  Google Scholar 

  26. Stauber, J. L., N. M. Franklin, and M. S. Adams (2002) Applications of flow cytometry to ecotoxicity testing using microalgae. TIBTECH 20: 141–143.

    CAS  Google Scholar 

  27. Richmond, A. (1986) Handbook of microalgal mass culture. 1st ed., pp. 199–243. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  28. Choi K. J., Z. Kakhost, E. Barzana, and M. Karel (1987) Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in cell density apparatus. Food Technol. 11: 117–128.

    Google Scholar 

  29. Illman, A. M., A. H. Scragg, and S. W. Shales (2000) Increase in Chlorella strains caloric values when grown in low nitrogen medium. Enzyme Microbiol. Technol. 80: 749–756.

    Google Scholar 

  30. European Standard EN 14214 (2003) Automotive fuels. Fatty acid methyl esters for diesel engines. Requirements and test methods.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Lopes da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, T.L., Santos, C.A. & Reis, A. Multi-parameter flow cytometry as a tool to monitor heterotrophic microalgal batch fermentations for oil production towards biodiesel. Biotechnol Bioproc E 14, 330–337 (2009). https://doi.org/10.1007/s12257-008-0228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0228-8

Keywords

Navigation