Comparison of the synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA) as scaffolds for artificial cartilage

Abstract

Chondrocytes are easily de-differentiated when cultured in monolayer, and tissue-engineered cartilage can be generated by seeding chondrocytes onto three-dimensional porous synthetic biodegradable polymers. In this study, we investigated the biochemical and molecular aspects of chondrocytes in a monolayer-culture system and selected the optimal subculture passages based on their de-differentiation. We also compared two commonly used synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA), for their suitability as scaffolds for artificial cartilage. De-differentiated chondrocytes were observed after two passages. These results suggested that the first cell passage was optimal for seeding as only a few chondrocytes secreted extracellular matrix components to form homogeneously compact cartilage. Substantially increased glycosaminoglycan and total collagen levels revealed that PLGA scaffolds were a better option for inducing cartilage tissue formation compared to the PLA scaffolds. Histological and immunohistochemical results showed that chondrocytes seeded into PLGA retained their morphological phenotype to a greater extent than those seeded into PLA.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Hellio Le Graverand, M. P., C. Reno, and D. A. Hart (1998) Influence of pregnancy on gene expression in rabbit articular cartilage. Osteoarthr. Cartil. 6: 341–350.

    Article  CAS  Google Scholar 

  2. 2.

    Deng, Y., K. Zhao, X. F. Zhang, P. Hu, and G. Q. Chen (2002) Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 23: 4049–4056.

    Article  CAS  Google Scholar 

  3. 3.

    Min, B. H., B. H. Choi, and S. R. Park (2007) Low intensity ultrasound as a supporter of cartilage regeneration and its engineering. Biotechnol. Bioprocess Eng. 12: 22–31.

    Article  CAS  Google Scholar 

  4. 4.

    Sahoo, S. K., A. K. Panda, and V. Labhasetwar (2005) Characterization of porous PLGA/PLA microparticles as a scaffold for three dimensional growth of breast cancer cells. Biomacromolecules 6: 1132–1139.

    Article  CAS  Google Scholar 

  5. 5.

    Rabiee, S. M., S. M. J. Mortazavi, F. Moztarzadeh, D. Sharifi, Sh. Sharifi, M. Solati-Hashjin, H. Salimi-Kenari, and D. Bizari (2008) Mechanical behavior of a new biphasic calcium phosphate bone graft. Biotechnol. Bioprocess Eng. 13: 204–209.

    Article  CAS  Google Scholar 

  6. 6.

    Taylor, M. S., A. U. Daniels, K. P. Andriano, and J. Heller (1994) Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J. Appl. Biomater. 5: 151–157.

    Article  CAS  Google Scholar 

  7. 7.

    Bryan, D. J., A. H. Holway, K. K. Wang, A. E. Silva, D. J. Trantolo, D. Wise, and I. C. Summerhayes (2000) Influence of glial growth factor and Schwann cells in a bioresorbable guidance channel on peripheral nerve regeneration. Tissue Eng. 6: 129–138.

    Article  CAS  Google Scholar 

  8. 8.

    Evans, G. R., K. Brandt, M. S. Widmer, L. Lu, R. K. Meszlenyi, P. K. Gupta, A. G. Mikos, J. Hodges, J. Williams, A. Gürlek, A. Nabawi, R. Lohman, and C. W. Patrick (1999) In vivo evaluation of poly (L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 20: 1109–1115.

    Article  CAS  Google Scholar 

  9. 9.

    Hadlock, T., C. Sundback, D. Hunter, M. Cheney, and J. P. Vacanti (2000) A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng. 6: 119–127.

    Article  CAS  Google Scholar 

  10. 10.

    Calvert, J. W., W. C. Chua, N. A. Gharibjanian, S. Dhar, and G. R. Evans (2005) Osteoblastic phenotype expression of MC3T3-E1 cells cultured on polymer surfaces. Plast. Reconstr. Surg. 116: 567–576.

    Article  CAS  Google Scholar 

  11. 11.

    Benya, P. D. and J. D. Shaffer (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30: 215–224.

    Article  CAS  Google Scholar 

  12. 12.

    Elima, K. and E. Vuorio (1989) Expression of mRNAs for collagens and other matrix components in dedifferentiating and redifferentiating human chondrocytes in culture. FEBS Lett. 258: 195–198.

    Article  CAS  Google Scholar 

  13. 13.

    Von der Mark, K., V. Gauss, H. von der Mark, and P. Müller (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267: 531–532.

    Article  Google Scholar 

  14. 14.

    Kim, H., H. W. Kim, and H. Suh (2003) Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells. Biomaterials 24: 4671–4679.

    Article  CAS  Google Scholar 

  15. 15.

    Choi, Y. S., S. N. Park, and H. Suh (2005) Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials 26: 5855–5863.

    Article  CAS  Google Scholar 

  16. 16.

    Choi, Y. S., S. N. Park, and H. Suh (2008) The effect of PLGA sphere diameter on rabbit mesenchymal stem cells in adipose tissue engineering. J. Mater. Sci. Mater. Med. 19: 2165–2171.

    Article  CAS  Google Scholar 

  17. 17.

    Tullberg-Reinert, H. and G. Jundt (1999) In situ measurement of collagen synthesis by human bone cells with a sirius red-based colorimetric microassay: effects of transforming growth factor beta2 and ascorbic acid 2-phosphate. Histochem. Cell Biol. 112: 271–276.

    Article  CAS  Google Scholar 

  18. 18.

    Suh, H. and J. E. Lee (2002) Behavior of fibroblasts on a porous hyaluronic acid incorporated collagen matrix. Yonsei Med. J. 43: 193–202.

    CAS  Google Scholar 

  19. 19.

    Habraken, W. J., J. G. Wolke, A. G. Mikos, and J. A. Jansen (2006) Injectable PLGA microsphere/calcium phosphate cements: physical properties and degradation characteristics. J. Biomater. Sci. Polym. Ed. 17: 1057–1074.

    Article  CAS  Google Scholar 

  20. 20.

    Shive, M. S. and J. M. Anderson (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28: 5–24.

    Article  Google Scholar 

  21. 21.

    Hou, Q., D. W. Grijpma, and J. Feijen (2003) Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. J. Biomed. Mater. Res. 67: 732–740.

    Article  Google Scholar 

  22. 22.

    Sherwood, J. K., S. L. Riley, R. Palazzolo, S. C. Brown, D. C. Monkhouse, M. Coates, L. G. Griffith, L. K. Landeen, and A. Ratcliffe (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23: 4739–4751.

    Article  CAS  Google Scholar 

  23. 23.

    Liu, R., S. S. Huang, Y. H. Wan, G. H. Ma, and Z. G. Su (2006) Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro. Colloids Surf. 51: 30–38.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hwal Suh or Seung Hwa Hong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, N.K., Oh, H.J., Hong, C.M. et al. Comparison of the synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA) as scaffolds for artificial cartilage. Biotechnol Bioproc E 14, 180–186 (2009). https://doi.org/10.1007/s12257-008-0208-z

Download citation

Keywords

  • artificial cartilage
  • biodegradation
  • polymer
  • chondrocyte
  • biocompatibility
  • biological safety