Skip to main content
Log in

Ethanol production by Zymomonas mobilis CHZ2501 from industrial starch feedstocks

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The optimal conditions of ethanol fermentation process by Zymomonas mobilis CHZ2501 were investigated. Brown rice, naked barley, and cassava were selected as representatives of the starch-based raw material commercially available for ethanol production. Considering enzyme used for saccharification of starch, the ethanol productivity with complex enzyme was higher than glucoamylase. With regards to the conditions of saccharification, the final ethanol productions of simultaneous saccharification and pre-saccharified process for 1 h were not significantly different. The result suggested that it is possible for simultaneous saccharification and fermentation as a cost-effective process for ethanol production by eliminating the separate saccharification. Additionally, the fermentation rate in early fermentation stage was generally increased with increase of inoculum volume. As the result, optimal condition for ethanol production was simultaneous saccharification and fermentation with complex enzyme and 5% inoculation. Under the same condition, the volumetric productivities and ethanol yields were attained to 3.26 g/L·h and 93.5% for brown rice, 2.62 g/L·h and 90.4% for naked barley, and 3.28 g/L·h and 93.7% for cassava, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reijnders, L. (2006) Conditions for the sustainability of biomass based fuel use. Energy Policy 34: 863–876.

    Article  Google Scholar 

  2. Ezeji, T. C., N. Qureshi, and H. P. Blaschek (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fedbatch technique and product inhibition by gas stripping. Appl. Microbiol. Biotechnol. 63: 653–658.

    Article  CAS  Google Scholar 

  3. Lawford, H. G. and J. D. Rousseau (2003) Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis. Appl. Biochem. Biotechnol. 106: 457–469.

    Article  Google Scholar 

  4. Lin, Y. and S. Tanaka (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627–642.

    Article  CAS  Google Scholar 

  5. Chang, H. N., B. J. Kim, J. W. Kang, C. M. Jeong, N. J. Kim, and J. K. Park (2008) High cell density ethanol fermentation in an upflow packed-bed cell recycle bioreactor. Biotechnol. Bioprocess Eng. 13: 123–135.

    Article  CAS  Google Scholar 

  6. Chen, L. J., Y. L. Xu, F. W. Bai, W. A. Anderson, and M. Moo-Young (2005) Observed quasi-steady kinetics of yeast cell growth and ethanol formation under very high gravity fermentation condition. Biotechnol. Bioprocess Eng. 10: 115–121.

    Article  CAS  Google Scholar 

  7. Tsantili, I. C., M. N. Karim, and M. I. Klapa (2007) Quantifying the metabolic capabilities of engineered Zymomonas mobilis using linear programming analysis. Microb. Cell Fact. 6: 8.

    Article  Google Scholar 

  8. Rogers, P. L., Y. J. Jeon, K. J. Lee, and H. G. Lawford (2007) Zymomonas mobilis for fuel ethanol and higher value products. Adv. Biochem. Eng. Biotechnol. 108: 263–288.

    CAS  Google Scholar 

  9. Zhang, M., C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267: 240–243.

    Article  CAS  Google Scholar 

  10. Seo, J. S., H. Chong, H. S. Park, K. O. Yoon, C. Jung, J. J. Kim, J. H. Hong, H. Kim, J. H. Kim, J. I. Kil, C. J. Park, H. M. Oh, J. S. Lee, S. J. Jin, H. W. Um, H. J. Lee, S. J. Oh, J. Y. Kim, H. L. Kang, S. Y. Lee, K. J. Lee, and H. S. Kang (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat. Biotechnol. 23: 63–68.

    Article  CAS  Google Scholar 

  11. Rogers, P. L., K. J. Lee, and D. E. Tribe (1979) Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotechnol. Lett. 1: 165–170.

    Article  CAS  Google Scholar 

  12. Sprenger, G. A. (1996) Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol. Lett. 145: 301–307.

    Article  CAS  Google Scholar 

  13. Choi, G. W., S. K. Moon, Y. Kim, B. W. Jang, Y. R. Kim, and B. W. Chung (2008) Optimization of solid-state fermentation condition using distiller’s dried grain. Kor. J. Biotechnol. Bioeng. 23: 345–349.

    Article  Google Scholar 

  14. Jeon, B. Y., S. J. Kim, D. H. Kim, B. K. Na, D. H. Park, H. T. Tran, R. Zhang, and D. H. Ahn (2007) Development of a serial bioreactor system for direct ethanol production from starch using Aspergillus niger and Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 12: 566–573.

    Article  CAS  Google Scholar 

  15. Swings, J. and J. De Ley (1977) The biology of Zymomonas. Bacteriol. Rev. 41: 1–46.

    CAS  Google Scholar 

  16. Choi, G. W., H. W. Kang, Y. R. Kim, and B. W. Chung (2008) Comparison of ethanol fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 using starch feedstocks. Kor. Chem. Eng. Res. 46: 977–982.

    CAS  Google Scholar 

  17. Novozymes (2004) Application sheet: Enzymes that make glucose from liquefied grains. Novozymes, Bagsvaerd, Denmark.

    Google Scholar 

  18. Tsuey, L. S., A. B. Ariff, R. Mohamad, and R. A. Rahim (2006) Improvements of GC and HPLC analyses in solvent (acetone-butanol-ethanol) fermentation by Clostridium saccharobutylicum using a mixture of starch and glycerol as carbon source. Biotechnol. Bioprocess Eng. 11: 293–298.

    Article  CAS  Google Scholar 

  19. Novozymes (1986) Industrial application sheet III. F-860973. Novozymes, Bagsvaerd, Denmark.

    Google Scholar 

  20. Nam, K. D. (1999) The Improvement of Processes for the Efficient Production of Alcohol. Ph.D. Thesis. Kyungpook National University, Daegu, Korea.

    Google Scholar 

  21. So, M. H., S. Y. Park, S. H. Kim, and H. J. Oh (1994) Conditions for the production of amylase and protease in marking wheat flour Nuluk by Aspergillus usamii mut. shirousamii S1. Kor. J. Food Nutr. 7: 51–57.

    Google Scholar 

  22. Nijssen, L. M., C. A. Visscher, H. Maarse, L. C. Willemsens, and M. H. Boelens (1996) Volatile Compound in Food. 7th ed., pp. 661. TNO Nutrition and Food Research Institute, Zeist, The Netherlands.

    Google Scholar 

  23. Motton, I. D. and A. J. Macleod (1986) Food Flavours: Part B, The Flavour of Beverages. pp. 239. Elsevier Science Publishers B.V., Amsterdam, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Wook Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, GW., Kang, HW., Kim, YR. et al. Ethanol production by Zymomonas mobilis CHZ2501 from industrial starch feedstocks. Biotechnol Bioproc E 13, 765–771 (2008). https://doi.org/10.1007/s12257-008-0184-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0184-3

Keywords

Navigation