Prospective of the cosmeceuticals derived from marine organisms

Abstract

Cosmeceuticals, derived from the words ‘cosmetic and pharmaceutical’, have drug-like benefits and contain active ingredients such as vitamins, phytochemicals, enzymes, antioxidants, and essential oils. Cosmeceuticals have attracted increased attention because of their beneficial effects on human health. Bioactive substances derived from marine organisms have diverse functional roles as a secondary metabolite and these properties can be applied to the developments of novel pharmaceuticals and cosmeceuticals. Recently, extensive studies have been conducted on the general aspects of the chemical structures, physical and biochemical properties, and biotechnological applications of bioactive substances derived from marine organisms. In this review, we have discussed recent progresses in the biotechnological applications of bioactive substances from marine organisms as cosmeceuticals.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Pomponi, S. A. (1999) The bioprocess-technological potential of the sea. J. Biotechnol. 70: 5–13.

    CAS  Google Scholar 

  2. 2.

    Andersen, R. J. and D. E. Williams (2000) Chemistry in the marine environment. pp. 55–79. In: R. E. Hester and R. M. Harrison (eds.). Pharmaceuticals from the Sea. The Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  3. 3.

    Faulkner, D. J. (2000) Highlights of marine natural products chemistry (1972–1999). Nat. Prod. Rep. 17: 1–6.

    CAS  Google Scholar 

  4. 4.

    Malakoff, D. (1997) Extinction on the high seas. Science 277: 486–488.

    CAS  Google Scholar 

  5. 5.

    Mungo, F. (2005) A study into the prospects for marine biotechnology development in the united kingdom. FMP Marine Biotechnology Group Report 2: 17–23.

    Google Scholar 

  6. 6.

    Fitton, J. H., M. Irhimeh, and N. Falk (2007) Macroalgal fucoidan extracts: A new opportunity for marine cosmetics. Cosmet. Toil. 122: 55–64.

    CAS  Google Scholar 

  7. 7.

    Majmudar, G. (2007) Compositions of marine botonicals to provide nutrition to aging and environmentally damaged skin. US Patent 7,303,753 B2.

  8. 8.

    Karawita, R., M. Senevirathne, Y. Athukorala, A. Affan, Y. J. Lee, S. K. Kim, J. B. Lee, and Y. J. Jeon (2007) Protective effect of enzymatic extracts from microalgae against DNA damage induced by H2O2. Mar. Biotechnol. 9: 479–490.

    CAS  Google Scholar 

  9. 9.

    Li, X., X. Fan, L. Han, and Q. Lou (2002) Fatty acids of some algae from the Bohai Sea. Phytochemistry 59: 157–161.

    CAS  Google Scholar 

  10. 10.

    Yuan, Y. V. and N. A. Walsh (2006) Antioxidants and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem. Toxicol. 44: 1144–1150.

    CAS  Google Scholar 

  11. 11.

    Stolz, P. and B. Obermayer (2005) Manufacturing microalgae for skin care. Cosmet. Toil. 120: 99–106.

    Google Scholar 

  12. 12.

    Jin, E. S. and A. Melis (2003) Microalgal biotechnology: Carotenoid production by the green algae Dunaliella salina. Biotechnol. Bioprocess Eng. 8: 331–337.

    CAS  Google Scholar 

  13. 13.

    Spolaore, P., C. Joannis-Cassan, E. Duran, and A. Isambert (2006) Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87–96.

    CAS  Google Scholar 

  14. 14.

    Jung, H. A., S. K. Hyun, H. R. Kim, and J. S. Choi (2006) Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fish. Sci. 72: 1292–1299.

    CAS  Google Scholar 

  15. 15.

    Solomons, N. W. and J. Bulux (1993) Plant sources of provitamin A and human nutriture. Nutr. Rev. 51: 199–204.

    CAS  Article  Google Scholar 

  16. 16.

    Armstrong, G. A. (1994) Eubacteria show their true colors: genetics of carotenoid pigment biosynthesis from microbes to plants. J. Bacteriol. 176: 4795–4802.

    CAS  Google Scholar 

  17. 17.

    Armstrong, G. A. (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu. Rev. Microbiol. 51: 629–659.

    CAS  Google Scholar 

  18. 18.

    Sandmann, G. (2001) Carotenoid biosynthesis and biotechnological application. Arch. Biochem. Biophys. 385: 4–12.

    CAS  Google Scholar 

  19. 19.

    Ziccarelli, V. E. and T. K. Basu (2003) An in vivo study of the antioxidant potentials of a plant food concentrate. J. Am. Coll. Nutr. 22: 277–282.

    CAS  Google Scholar 

  20. 20.

    Kang, K. S., I. D. Kim, R. H. Kwon, and B. J. Ha (2008) Undaria pinnatifida fucoidan extract protects against CCl4-induced oxidative stress. Biotechnol. Bioprocess Eng. 13: 168–173.

    CAS  Google Scholar 

  21. 21.

    Lee, N. Y., S. P. Ermakova, H. K. Choi, M. I. Kusaykin, N. M. Shevchenko, T. N. Zvyagintseva, and H. S. Choi (2008) Fucoidan from Laminaria cichorioides inhibits AP-1 transactivation and cell transformation in the mouse epidermal JB6 cells. Mol. Carcinog. 47: 629–637.

    CAS  Google Scholar 

  22. 22.

    Usov, A. I., G. P. Smirnova, and N. G. Klochkova (2001) Polysaccharides of algae: 55.1 Polysaccharide composition of several brown algae from Kamchatka. Russian J. Bio. Chem. 27: 395–399.

    CAS  Google Scholar 

  23. 23.

    Sakai, T. and I. Kato (2006) Polysaccharides from a tangle. High Polym. 55: 488–489.

    CAS  Google Scholar 

  24. 24.

    Mangin, C. M., D. M. Goodall, and M. A. Roberts (2001) Separation of ι-, κ and λ-carrageenans by capillary electrophoresis. Electrophoresis 22: 1460–1467.

    CAS  Google Scholar 

  25. 25.

    Lecacheux, D., R. Panaras, G. Brigand, and G. Martin (1985) Molecular weight distribution of carrageenans by size exclusion chromatography and low angle laser light scattering. Carbohydr. Polym. 5: 423–440.

    CAS  Google Scholar 

  26. 26.

    Viebke, C., J. Borgstrom, and L. Piculell (1995) Characterisation of kappa-and iota-carrageenan coils and helices by MALLS/GPC. Carbohydr. Polym. 27: 145–154.

    CAS  Google Scholar 

  27. 27.

    Yermak, I. M., Y. S. Khotimchenko (1997) Physical and chemical properties, application and biological activity of the red algae polysaccharide carrageenan. Russian J. Mar. Biol. 23: 109–122.

    Google Scholar 

  28. 28.

    Cabello-Pasini, A., N. Victoria-Cota, V. Macias-Carranza, E. Hernandez-Garibay, and R. Muniz-Salazar (2005) Clarification of wines using polysaccharides extracted from seaweeds. Am. J. Enol. Vitic. 56: 52–59.

    CAS  Google Scholar 

  29. 29.

    Smidsrod, O. and K. I. Draget (1996) Chemistry and physical properties of alginates. Carbohydr. Eur. 14: 6–13.

    Google Scholar 

  30. 30.

    Prasad, K., A. K. Siddhanta, M. Ganesan, B. K. Ramavat, B. Jha, and P. K. Ghosh (2007) Agars of Gelidiella acerosa of west and southeast coasts of India. Bioresour. Technol. 98: 1907–1915.

    CAS  Google Scholar 

  31. 31.

    Mansour, M. P., J. K. Volkman, D. G. Holdsworth, A. E. Jackson, and S. I. Blackburn (1999) Very-long-chain (C28) highly unsaturated fatty acids in marine dinoflagellates. Phytochemistry 50: 541–548.

    CAS  Google Scholar 

  32. 32.

    Rossano, R., N. Ungaro, A. D’Ambrosio, G. M. Liuzzi, and P. Riccio (2003) Extracting and purifying Rphycoerythrin from Mediterranean red algae Corallina elongata Ellis & Solander. J. Biotechnol. 101: 289–293.

    CAS  Google Scholar 

  33. 33.

    Bermejo, R., E. Ruiz, and F. G. Acien (2007) Recovery of B-phycoerythrin using expanded bed adsorption chromatography: Scale-up of the process. Enzyme Microb. Technol. 40: 927–933.

    CAS  Google Scholar 

  34. 34.

    Bermejo, R., E. M. Talavera, C. delValle, and J. M. Alvarez-Pez (2000) C-phycocyanin incorporated into reverse micelles: a fluorescence study. Colloids Surf. B Biointerfaces 18: 51–59.

    CAS  Google Scholar 

  35. 35.

    Arad, S. and A. Yaron (1992) Natural pigments from red microalgae for use in foods and cosmetics. Trends Food Sci. Technol. 3: 92–97.

    CAS  Google Scholar 

  36. 36.

    Oren, A. and N. Gunde-Cimerman (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol. Lett. 269: 1–10.

    CAS  Google Scholar 

  37. 37.

    Sinha, R. P., M. Klisch, A. Groniger, and D. P. Hader (2000) Mycosporine-like amino acids in the marine red alga Gracilaria cornea — effects of UV and heat. Environ. Exp. Bot. 43: 33–43.

    CAS  Google Scholar 

  38. 38.

    Arai, T., M. Nishijima, K. Adachi, and H. Sano (1992) Isolation and structure of a UV absorbing substance from the marine bacterium Micrococcus sp. AK-334. MBI Report 113: 88–94.

    Google Scholar 

  39. 39.

    Helbling, E. W., B. E. Chalker, W. C. Dunlap, O. Holm-Hansen, and V. E. Villafañe (1996) Photoacclimation of antarctic marine diatoms to solar ultraviolet radiation. J. Exp. Mar. Biol. Ecol. 204: 85–101.

    Google Scholar 

  40. 40.

    Hannach, G. and A. C. Sigleo (1998) Photoinduction of UV-absorbing compounds in six species of marine phytoplankton. Mar. Ecol. Prog. Ser. 174: 207–222.

    CAS  Google Scholar 

  41. 41.

    Riegger, L. and D. Robinson (1997) Photoinduction of UV-absorbing compounds in Antarctic diatoms and Phaeocystis antarctica. Mar. Ecol. Prog. Ser. 160: 13–25.

    Google Scholar 

  42. 42.

    Kamal-Eldin, A. and L. A. Appelqvist (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31: 671–701.

    CAS  Google Scholar 

  43. 43.

    Tani, Y. and H. Tsumura (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis. Z. Agric. Biol. Chem. 53: 305–312.

    CAS  Google Scholar 

  44. 44.

    Fryer, M. J. (1992) The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell Environ. 15: 381–392.

    CAS  Google Scholar 

  45. 45.

    Podhaisky, H. P. and W. Wohlrab (2002) Is the photoprotective effect of vitamin E based on its antioxidative capacity? J. Dermatol. Sci. 28: 84–86.

    CAS  Google Scholar 

  46. 46.

    Seth, R. K. and S. Kharb (1999) Protective function of alpha-tocopherol against the process of cataractogenesis in humans. Ann. Nutr. Metab. 43: 286–289.

    CAS  Google Scholar 

  47. 47.

    Chow, C. K. (2001) Handbook of vitamins. pp. 165–197. In: R. B. Rucker, U. W. Suttie, D. B. McCormick, and L. J. Machlin (eds.). Handbook of Vitamins. Marcel Dekker, New York, NY, USA.

    Google Scholar 

  48. 48.

    Brigelius-Flohé, R. and M. G. Traber (1999) Vitamin E: Function and metabolism. FASEB J. 13: 1145–1155.

    Google Scholar 

  49. 49.

    Scalia, S., A. Renda, G. Ruberto, F. Bonina, and E. Menegatti (1995) Assay of vitamin A palmitate and vitamin E acetate in cosmetic creams and lotions by supercritical fluid extraction and HPLC. J. Pharm. Biomed. Anal. 13: 273–277.

    CAS  Google Scholar 

  50. 50.

    Alberts, D. S., R. Goldman, M. J. Xu, R. T. Dorr, J. Quinn, K. Welch, J. Guillen-Rodriguez, M. Aickin, Y. M. Peng, L. Loescher, and H. Gensler (1996) Disposition and metabolism of topically administered α-tocopherol acetate: a common ingredient of commercially available sunscreens and cosmetics. Nutr. Cancer 26: 193–201.

    CAS  Article  Google Scholar 

  51. 51.

    Brown, M. R., M. Mular, I. Miller, C. Farmer, and C. Trenerry (1999) The vitamin content of microalgae used in aquaculture. J. Appl. Phycol. 11: 247–255.

    CAS  Google Scholar 

  52. 52.

    Abalde, J., J. Fabregas, and C. Herrero (1991) β-Carotene, vitamin C and vitamin E content of the marine microalga Dunaliella tertiolecta cultured with different nitrogen sources. Bioresour. Technol. 38: 121–125.

    CAS  Google Scholar 

  53. 53.

    Rice-Evans, C. A., N. J. Miller, P. G. Bolwell, P. M. Bramley, and J. B. Pridham (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22: 375–383.

    CAS  Google Scholar 

  54. 54.

    Jorgensen, L. V., H. L. Madsen, M. K. Thomsen, L. O. Dragsted, and L. H. Skibsted (1999) Regulation of phenolic antioxidants from phenoxyl radicals: an ESR and electrochemical study of antioxidant hierarchy. Free Radic. Res. 30: 207–220.

    CAS  Google Scholar 

  55. 55.

    Huang, M. T. and T. Farraro (1992) Phenolic compounds in food and cancer prevention. pp. 8–33. In: M. T. Huang, C. T. Ho, and C. Y. Lee (eds.). Phenolic Compounds in Food and Their Effects on Health II, Antioxidants and Cancer Prevention. ACS Sym, American Chemical Society, Washington DC, USA.

    Google Scholar 

  56. 56.

    Irie, T., M. Suzuki, E. Kurosawa, and T. Masamune (1966) Laurinterol and debromolaurinterol, constituents from Laurencia intermedia. Tetrahedron Lett. 1837–1840.

  57. 57.

    Kumar, A. S., K. Mody, and B. Jha (2007) Evaluation of biosurfactant/bioemulsifier production by a marine bacterium. Bull. Environ. Contam. Toxicol. 79: 617–621.

    CAS  Google Scholar 

  58. 58.

    Desai, J. D. and I. M. Banat (1997) Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47–64.

    CAS  Google Scholar 

  59. 59.

    Herman, D. C., J. F. Artiola, and R. M. Miller (1995) Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ. Sci. Technol. 29: 2280–2285.

    CAS  Google Scholar 

  60. 60.

    Miller, R. M. (1995) Biosurfactant-facilitated remediation of metal-contaminated soils. Environ. Health Perspect. 103: 59–62.

    CAS  Google Scholar 

  61. 61.

    Miller, R. M. and Y. Zhang (1997) Measurement of biosurfactant-enhanced solubilization and biodegradation of hydrocarbons. pp. 59–66. In: D. Sheehan (ed.). Methods in Biotechnology. Humana Press, Totowa, NJ, USA.

    Google Scholar 

  62. 62.

    Stanghellini, M. E. and R. M. Miller (1997) Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis. 81: 4–12.

    CAS  Google Scholar 

  63. 63.

    Van Dyke, M. I., S. L. Gulley, H. Lee, and J. T. Trevors (1993) Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. J. Ind. Microbiol. 11: 163–170.

    Google Scholar 

  64. 64.

    Zhang, Y. and R. M. Miller (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl. Environ. Microbiol. 61: 2247–2251.

    CAS  Google Scholar 

  65. 65.

    Khmelenina, V. N., V. G. Sakharovskii, A. S. Reshet nikov, and Iu A. Trotsenko (2000) Synthesis of osmoprotectors by halophilic and alkalophilic methanotrophs. Mikrobiologiia 69: 465–470.

    CAS  Google Scholar 

  66. 66.

    Cambon-Bonavita, M. A., G. Raguenes, J. Jean, P. Vincent, and J. Guezennec (2002) A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. J. Appl. Microbiol. 93: 310–315.

    CAS  Google Scholar 

  67. 67.

    Vincent, P., P. Pignet, F. Talmont, L. Bozzi, B. Fournet, J. Guezennec, C. Jeanthon, and D. Prieur (1994) Production and characterization of an exopolysaccharide excreted by a deep-sea hydrothermal vent bacterium isolated from the polychaete annelid Alvinella pompejana. Appl. Environ. Microbiol. 60: 4134–4141.

    CAS  Google Scholar 

  68. 68.

    Raguenes, G., P. Pignet, G. Gauthier, A. Peres, R. Christen, H. Rougeaux, G. Barbier, and J. Guezennec (1996) Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. Fijiensis, and preliminary characterization of the polymer. Appl. Environ. Microbiol. 62: 67–73.

    CAS  Google Scholar 

  69. 69.

    Raguenes, G., R. Christen, J. Guezennec, P. Pignet, and G. Barbier (1997) Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int. J. Syst. Bacteriol. 47: 989–995.

    CAS  Article  Google Scholar 

  70. 70.

    Raguenes, G. H., A. Peres, R. Ruimy, P. Pignet, R. Christen, M. Loaec, H. Rougeaux, G. Barbier, and J. G. Guezennec (1997) Alteromonas infernus sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent. J. Appl. Microbiol. 82: 422–430.

    CAS  Google Scholar 

  71. 71.

    Rougeaux, H., J. Guezennec, R. W. Carlson, N. Kervarec, R. Pichon, and P. Talaga (1999) Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent. Carbohydr. Res. 315: 273–285.

    CAS  Google Scholar 

  72. 72.

    Matsunaga, T., J. G. Burgess, N. Yamada, K. Komatsu, S. Yoshida, and Y. Wachi (1993) An ultraviolet (UV-A) absorbing biopterin glucoside from the marine planktonic cyanobacterium Oscillatoria sp. Appl. Microbiol. Biotechnol. 39: 250–253.

    CAS  Google Scholar 

  73. 73.

    Takamatsu, S., T. W. Hodges, I. Rajbhandari, W. H. Gerwick, M. T. Hamann, and D. G. Nagle (2003) Marine natural products as novel antioxidant prototypes. J. Nat. Prod. 66: 605–608.

    CAS  Google Scholar 

  74. 74.

    Ellwood, D. C., C. G. T. Evans, M. Dunn, N. McInnes, R. Yeo, and K. J. Smith (1996) Production of hyaluronic acid. US Patent 5,563,051.

  75. 75.

    Lintner, K., F. Lamy, C. Mas-Chamberlin, P. Mondon, S. Scocci, P. Buche, and P. Girard (2002) Heat-stable enzymes from deep sea bacteria: a key tool for skin protection against UV-A induced free radicals. IFSCC Mag. 5: 195–200.

    Google Scholar 

  76. 76.

    Qian, Z. J., W. K. Jung, and S. K. Kim (2008) Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresour. Technol. 99: 1690–1698.

    CAS  Google Scholar 

  77. 77.

    Je, J. Y., Z. J. Qian, and S. K. Kim (2007) Antioxidant peptide isolated from muscle protein of bullfrog, Rana catesbeiana Shaw. J. Med. Food 10: 401–407.

    CAS  Google Scholar 

  78. 78.

    Kim, S. Y., J. Y. Je, and S. K. Kim (2007) Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J. Nutr. Biochem. 18: 31–38.

    CAS  Google Scholar 

  79. 79.

    Jung, W. K., Z. J. Qian, S. H. Lee, S. Y. Choi, N. J. Sung, H. G. Byun, and S. K. Kim (2007) Free radical scavenging activity of a novel antioxidative peptide isolated from in vitro gastrointestinal digests of Mytilus coruscus. J. Med. Food 10: 197–202.

    CAS  Google Scholar 

  80. 80.

    Je, J. Y., P. J. Park, and S. K. Kim (2005) Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Int. 38: 45–50.

    CAS  Google Scholar 

  81. 81.

    Rajapakse, N., E. Mendis, H. G. Byun, and S. K. Kim (2005) Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem. 16: 562–569.

    CAS  Google Scholar 

  82. 82.

    Qian, Z. J., W. K. Jung, N. D. Ngo, S. H. Lee, and S. K. Kim (2007) Isolation and characterization of collagen from skin of bullfrog, Rana catesbeiana Shaw. J. Fish. Sci. Technol. 10: 53–59.

    CAS  Google Scholar 

  83. 83.

    Kim, S. K. and E. Mendis (2006) Bioactive compounds from marine processing byproducts — a review. Food Res. Int. 39: 383–393.

    CAS  Google Scholar 

  84. 84.

    Senaratne, L. S., P. J. Park, and S. K. Kim (2006) Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin. Bioresour. Technol. 97: 191–197.

    CAS  Google Scholar 

  85. 85.

    Swatschek, D., W. Schatton, J. Kellermann, W. E. G. Muller, and J. Kreuter (2002) Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur. J. Pharm. Biopharm. 53: 107–113.

    CAS  Google Scholar 

  86. 86.

    Byun, H. G. and S. K. Kim (2001) Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochem. 36: 1155–1162.

    CAS  Google Scholar 

  87. 87.

    Kim, S. K., Y. T. Kim, H. G. Byun, K. S. Nam, D. S. Joo, and F. Shahidi (2001) Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Allaska pollack skin. J. Agric. Food Chem. 49: 1984–1989.

    CAS  Google Scholar 

  88. 88.

    Mendis, E., N. Rajapakse, H. G. Byun, and S. K. Kim (2005) Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 77: 2166–2178.

    CAS  Google Scholar 

  89. 89.

    Mendis, E., N. Rajapakse, and S. K. Kim (2005) Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food Chem. 53: 581–587.

    CAS  Google Scholar 

  90. 90.

    Kim, S. K., H. G. Byun, and E. H. Lee (1994) Optimum extraction conditions of gelatin from fish skins and its physical properties. J. Kor. Ind. Eng. Chem. 5: 547–559.

    CAS  Google Scholar 

  91. 91.

    Proksch, P., R. A. Edrada, and R. Ebel (2002) Drugs from the seas — current status and microbial implications. Appl. Microbiol. Biotechnol. 59: 125–134.

    CAS  Google Scholar 

  92. 92.

    Rouhi, A. M. (1995) Supply issues complicate trek of chemicals from sea to market. Chem. Eng. News 73: 42–44.

    Google Scholar 

  93. 93.

    Yuan, G., M. L. Wahlqvist, G. He, M. Yang, and D. Li (2006) Natural products and anti-inflammatory activity. Asia Pac. J. Clin. Nutr. 15: 143–152.

    CAS  Google Scholar 

  94. 94.

    Newberger, N. C., L. K. Ranzer, J. M. Boehnlein, and R. G. Kerr (2006) Induction of terpene biosynthesis in dinoflagellate symbionts of Caribbean gorgonians. Phytochemistry 67: 2133–2139.

    CAS  Google Scholar 

  95. 95.

    Newman, D. J. and G. M. Cragg (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67: 1216–1238.

    CAS  Google Scholar 

  96. 96.

    Faulkner, D. J. (2000) Marine pharmacology. Antonie Van Leeuwenhoek 77: 135–145.

    CAS  Google Scholar 

  97. 97.

    Warner, A. H. and J. S. Clegg (2001) Diguanosine nucleotide metabolism and the survival of Artemia embryos during years of continuous anoxia. Eur. J. Biochem. 268: 1568–1576.

    CAS  Google Scholar 

  98. 98.

    Chou, K. M. and Y. C. Cheng (2003) The exonuclease activity of human apurinic/apyrimidinic endonuclease (APE1). Biochemical properties and inhibition by the natural dinucleotide Gp4G. J. Biol. Chem. 278: 18289–18296.

    CAS  Google Scholar 

  99. 99.

    Crack, J. A., M. Mansour, Y. Sun, and T. H. MacRae (2002) Functional analysis of a small heat shock/alphacrystallin protein from Artemia franciscana. Oligomerization and thermotolerance. Eur. J. Biochem. 269: 933–942.

    CAS  Google Scholar 

  100. 100.

    Synowiecki, J. and N. A. Al-Khateeb (2003) Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr. 43: 145–171.

    CAS  Google Scholar 

  101. 101.

    Shahidi, F. and R. Abuzaytoun (2005) Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv. Food Nutr. Res. 49: 93–135.

    CAS  Google Scholar 

  102. 102.

    Kim, S. K., Y. J. Jeon, and T. R. Jung (1998) Production and application of chitin and chitosan oligosaccharides. Recent Adv. Bioprocess Eng. 6: 153–185.

    Google Scholar 

  103. 103.

    Rasmussen, R. S. and M. T. Morrissey (2007) Marine biotechnology for production of food ingredients. Adv. Food Nutr. Res. 52: 237–292.

    CAS  Google Scholar 

  104. 104.

    Agullo, E., M. S. Rodriguez, V. Ramos, and L. Albertengo (2003) Present and future role of chitin and chitosan in food. Macromol. Biosci. 3: 521–530.

    CAS  Google Scholar 

  105. 105.

    Kurita, K. (2006) Chitin and chitosan: functional biopolymers from crustaceans. Mar. Biotechnol. 8: 203–226.

    CAS  Google Scholar 

  106. 106.

    Santhosh, S. and P. T. Mathew (2008) Preparation and properties of glucosamine and carboxymethylchitin from shrimp shell. J. Appl. Polym. Sci. 107: 280–285.

    CAS  Google Scholar 

  107. 107.

    Byun, H. G., P. J. Park, and S. K. Kim (2001) Preparation and characterization of emulsions using carboxymethylchitin. J. Chitin Chitosan 6: 95–101.

    Google Scholar 

  108. 108.

    Han, S. M., B. J. Ahn, Y. W. Kim, Y. B. Kim, K. H. Yu, and S. J. Lee (2001) The novel synthesis of carboxymethyl-chitin by a new process. J. Kor. Chem. Soc. 45: 334–340.

    CAS  Google Scholar 

  109. 109.

    Ylitalo, R., S. Lehtinen, E. Wuolijoki, P. Ylitalo, and T. Lehtimaki (2002) Cholesterol-lowering properties and safety of chitosan. Arzneimittel-Forschung 52: 1–7.

    CAS  Google Scholar 

  110. 110.

    Kim, S. K. and N. Rajapakse (2005) Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym. 62: 357–368.

    CAS  Google Scholar 

  111. 111.

    Shahidi, F., J. K. V. Arachchi, and Y. J. Jeon (1999) Food applications of chitin and chitosans. Trends Food Sci. Technol. 10: 37–51.

    CAS  Google Scholar 

  112. 112.

    Nam, M. Y., Y. H. Shon, S. K. Kim, C. H. Kim, T. R. Jeong, and K. S. Nam (2000) Effect of chitosan oligosaccharides on polyamine metabolism for chemopreventive activity. J. Chitin Chitosan 5: 15–18.

    Google Scholar 

  113. 113.

    Kim, S. K. and Y. J. Jeon (1997) Chitin and chitosan as materials of functional cosmetics. Kor. J. Chitin Citosan 2: 5–13.

    Google Scholar 

  114. 114.

    Kim, K., A. L. Creagh, and C. A. Haynes (1998) Effective production of N-acetyl-β-D-glucosamine by Serratia marcescens using chitinaceous waste. Biotechnol. Bioprocess Eng. 3: 71–77.

    Google Scholar 

  115. 115.

    Kim, S. K. and C. H. Kim (1998) Structural importance of β-1,4,-N-acetylglucosamine backbone in human diseases including malignant cancer and inflammation. J. Chitin Chitosan 3: 286–302.

    Google Scholar 

  116. 116.

    Bissett, D. L. (2006) Glucosamine: an ingredient with skin and other benefits. J. Cosmet. Dermatol. 5: 309–315.

    Google Scholar 

  117. 117.

    Lee, J. H., Y. S. Kim, T. J. Choi, W. J. Lee, and Y. T. Kim (2004) Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 54: 1699–1702.

    CAS  Google Scholar 

  118. 118.

    Lee, J. H., Y. B. Seo, S. Y. Jeong, S. W. Nam, and Y. T. Kim (2007) Functional analysis of combinations in astaxanthin biosynthesis genes from Paracoccus haeundaensis. Biotechnol. Bioprocess Eng. 12: 312–317.

    CAS  Google Scholar 

  119. 119.

    Lee, J. H. and Y. T. Kim (2006) Cloning and characterisation of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene 370: 86–95.

    CAS  Google Scholar 

  120. 120.

    Oumeish, O. Y. (1999) Traditional Arabic medicine in dermatology. Clin. Dermatol. 17: 13–20.

    CAS  Google Scholar 

  121. 121.

    Blanco-Dávila, F. (2000) Beauty and the body: the origins of cosmetics. Plastic Reconstr. Surg. 105: 1196–1204.

    Google Scholar 

  122. 122.

    Yamashita, S. (2003) Bamboo extract-sea salt mixed solutions with/strong antimicrobial activity and their use as cosmetics, toiletries, foods, and pharmaceuticals. Japan Patent 2003, 171,293.

  123. 123.

    Gupta, S. K. (2006). Cosmetic and Pharmaceutical mask for skin improvement. US Patent 2006, 0198805 A1.

  124. 124.

    Ma’or, Z., S. Yehuda, and W. Voss (1997) Skin smoothing effects of Dead Sea minerals: comparative profilometric evaluation of skin surface. Int. J. Cosmet. Sci. 19: 105–110.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, SK., Ravichandran, Y.D., Khan, S.B. et al. Prospective of the cosmeceuticals derived from marine organisms. Biotechnol Bioproc E 13, 511–523 (2008). https://doi.org/10.1007/s12257-008-0113-5

Download citation

Keywords

  • cosmeceuticals
  • marine organisms
  • antioxidants
  • algae
  • chitin
  • chitosan